1 / | | / 3 2 \ | \2*e + x - 3*sec (x)/ dx | / 0
Integral(2*E^3 + x - 3*sec(x)^2, (x, 0, 1))
Integrate term-by-term:
The integral of is when :
The integral of a constant times a function is the constant times the integral of the function:
The integral of a constant times a function is the constant times the integral of the function:
So, the result is:
So, the result is:
The integral of a constant is the constant times the variable of integration:
The result is:
Add the constant of integration:
The answer is:
/ | 2 | / 3 2 \ x 3 | \2*e + x - 3*sec (x)/ dx = C + -- - 3*tan(x) + 2*x*e | 2 /
1 3 3*sin(1) - + 2*e - -------- 2 cos(1)
=
1 3 3*sin(1) - + 2*e - -------- 2 cos(1)
Use the examples entering the upper and lower limits of integration.