Mister Exam

Other calculators


(2e^3+x)-3sec^2x

Integral of (2e^3+x)-3sec^2x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                          
  /                          
 |                           
 |  /   3            2   \   
 |  \2*e  + x - 3*sec (x)/ dx
 |                           
/                            
0                            
$$\int\limits_{0}^{1} \left(x - 3 \sec^{2}{\left(x \right)} + 2 e^{3}\right)\, dx$$
Integral(2*E^3 + x - 3*sec(x)^2, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of is when :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of a constant times a function is the constant times the integral of the function:

        So, the result is:

      So, the result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                      
 |                                  2                    
 | /   3            2   \          x                    3
 | \2*e  + x - 3*sec (x)/ dx = C + -- - 3*tan(x) + 2*x*e 
 |                                 2                     
/                                                        
$$-3\,\tan x+{{x^2}\over{2}}+2\,e^3\,x$$
The graph
The answer [src]
1      3   3*sin(1)
- + 2*e  - --------
2           cos(1) 
$$-{{6\,\tan 1-4\,e^3-1}\over{2}}$$
=
=
1      3   3*sin(1)
- + 2*e  - --------
2           cos(1) 
$$- \frac{3 \sin{\left(1 \right)}}{\cos{\left(1 \right)}} + \frac{1}{2} + 2 e^{3}$$
Numerical answer [src]
35.9988506724106
35.9988506724106
The graph
Integral of (2e^3+x)-3sec^2x dx

    Use the examples entering the upper and lower limits of integration.