Mister Exam

Integral of (2sinx-cosx)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                       
 --                       
 2                        
  /                       
 |                        
 |  (2*sin(x) - cos(x)) dx
 |                        
/                         
pi                        
--                        
2                         
π2π2(2sin(x)cos(x))dx\int\limits_{\frac{\pi}{2}}^{\frac{\pi}{2}} \left(2 \sin{\left(x \right)} - \cos{\left(x \right)}\right)\, dx
Integral(2*sin(x) - cos(x), (x, pi/2, pi/2))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      2sin(x)dx=2sin(x)dx\int 2 \sin{\left(x \right)}\, dx = 2 \int \sin{\left(x \right)}\, dx

      1. The integral of sine is negative cosine:

        sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

      So, the result is: 2cos(x)- 2 \cos{\left(x \right)}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (cos(x))dx=cos(x)dx\int \left(- \cos{\left(x \right)}\right)\, dx = - \int \cos{\left(x \right)}\, dx

      1. The integral of cosine is sine:

        cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

      So, the result is: sin(x)- \sin{\left(x \right)}

    The result is: sin(x)2cos(x)- \sin{\left(x \right)} - 2 \cos{\left(x \right)}

  2. Add the constant of integration:

    sin(x)2cos(x)+constant- \sin{\left(x \right)} - 2 \cos{\left(x \right)}+ \mathrm{constant}


The answer is:

sin(x)2cos(x)+constant- \sin{\left(x \right)} - 2 \cos{\left(x \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                              
 |                                               
 | (2*sin(x) - cos(x)) dx = C - sin(x) - 2*cos(x)
 |                                               
/                                                
(2sin(x)cos(x))dx=Csin(x)2cos(x)\int \left(2 \sin{\left(x \right)} - \cos{\left(x \right)}\right)\, dx = C - \sin{\left(x \right)} - 2 \cos{\left(x \right)}
The graph
1.57101.57201.57301.57401.57501.57601.57701.57801.57901.58005-5
The answer [src]
0
00
=
=
0
00
0
Numerical answer [src]
0.0
0.0

    Use the examples entering the upper and lower limits of integration.