Integral of 2sinx-3cosx dx
The solution
Detail solution
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2sin(x)dx=2∫sin(x)dx
-
The integral of sine is negative cosine:
∫sin(x)dx=−cos(x)
So, the result is: −2cos(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−3cos(x))dx=−3∫cos(x)dx
-
The integral of cosine is sine:
∫cos(x)dx=sin(x)
So, the result is: −3sin(x)
The result is: −3sin(x)−2cos(x)
-
Add the constant of integration:
−3sin(x)−2cos(x)+constant
The answer is:
−3sin(x)−2cos(x)+constant
The answer (Indefinite)
[src]
/
|
| (2*sin(x) - 3*cos(x)) dx = C - 3*sin(x) - 2*cos(x)
|
/
∫(2sin(x)−3cos(x))dx=C−3sin(x)−2cos(x)
The graph
2−252
=
2−252
Use the examples entering the upper and lower limits of integration.