Mister Exam

Integral of 2sinx-3cosx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                         
 --                         
 4                          
  /                         
 |                          
 |  (2*sin(x) - 3*cos(x)) dx
 |                          
/                           
0                           
0π4(2sin(x)3cos(x))dx\int\limits_{0}^{\frac{\pi}{4}} \left(2 \sin{\left(x \right)} - 3 \cos{\left(x \right)}\right)\, dx
Integral(2*sin(x) - 3*cos(x), (x, 0, pi/4))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      2sin(x)dx=2sin(x)dx\int 2 \sin{\left(x \right)}\, dx = 2 \int \sin{\left(x \right)}\, dx

      1. The integral of sine is negative cosine:

        sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

      So, the result is: 2cos(x)- 2 \cos{\left(x \right)}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (3cos(x))dx=3cos(x)dx\int \left(- 3 \cos{\left(x \right)}\right)\, dx = - 3 \int \cos{\left(x \right)}\, dx

      1. The integral of cosine is sine:

        cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

      So, the result is: 3sin(x)- 3 \sin{\left(x \right)}

    The result is: 3sin(x)2cos(x)- 3 \sin{\left(x \right)} - 2 \cos{\left(x \right)}

  2. Add the constant of integration:

    3sin(x)2cos(x)+constant- 3 \sin{\left(x \right)} - 2 \cos{\left(x \right)}+ \mathrm{constant}


The answer is:

3sin(x)2cos(x)+constant- 3 \sin{\left(x \right)} - 2 \cos{\left(x \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                  
 |                                                   
 | (2*sin(x) - 3*cos(x)) dx = C - 3*sin(x) - 2*cos(x)
 |                                                   
/                                                    
(2sin(x)3cos(x))dx=C3sin(x)2cos(x)\int \left(2 \sin{\left(x \right)} - 3 \cos{\left(x \right)}\right)\, dx = C - 3 \sin{\left(x \right)} - 2 \cos{\left(x \right)}
The graph
0.000.050.100.150.200.250.300.350.400.450.500.550.600.650.700.750-5
The answer [src]
        ___
    5*\/ 2 
2 - -------
       2   
25222 - \frac{5 \sqrt{2}}{2}
=
=
        ___
    5*\/ 2 
2 - -------
       2   
25222 - \frac{5 \sqrt{2}}{2}
2 - 5*sqrt(2)/2
Numerical answer [src]
-1.53553390593274
-1.53553390593274

    Use the examples entering the upper and lower limits of integration.