Mister Exam

Integral of 2sinx-3cosx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                         
 --                         
 4                          
  /                         
 |                          
 |  (2*sin(x) - 3*cos(x)) dx
 |                          
/                           
0                           
$$\int\limits_{0}^{\frac{\pi}{4}} \left(2 \sin{\left(x \right)} - 3 \cos{\left(x \right)}\right)\, dx$$
Integral(2*sin(x) - 3*cos(x), (x, 0, pi/4))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of sine is negative cosine:

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of cosine is sine:

      So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                  
 |                                                   
 | (2*sin(x) - 3*cos(x)) dx = C - 3*sin(x) - 2*cos(x)
 |                                                   
/                                                    
$$\int \left(2 \sin{\left(x \right)} - 3 \cos{\left(x \right)}\right)\, dx = C - 3 \sin{\left(x \right)} - 2 \cos{\left(x \right)}$$
The graph
The answer [src]
        ___
    5*\/ 2 
2 - -------
       2   
$$2 - \frac{5 \sqrt{2}}{2}$$
=
=
        ___
    5*\/ 2 
2 - -------
       2   
$$2 - \frac{5 \sqrt{2}}{2}$$
2 - 5*sqrt(2)/2
Numerical answer [src]
-1.53553390593274
-1.53553390593274

    Use the examples entering the upper and lower limits of integration.