Integral of 2sincosxdx dx
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫2sin(cos(x))dx=2∫sin(cos(x))dx
-
Don't know the steps in finding this integral.
But the integral is
∫sin(cos(x))dx
So, the result is: 2∫sin(cos(x))dx
-
Add the constant of integration:
2∫sin(cos(x))dx+constant
The answer is:
2∫sin(cos(x))dx+constant
The answer (Indefinite)
[src]
/ /
| |
| 2*sin(cos(x)) dx = C + 2* | sin(cos(x)) dx
| |
/ /
∫2sin(cos(x))dx=C+2∫sin(cos(x))dx
1
/
|
2* | sin(cos(x)) dx
|
/
0
20∫1sin(cos(x))dx
=
1
/
|
2* | sin(cos(x)) dx
|
/
0
20∫1sin(cos(x))dx
2*Integral(sin(cos(x)), (x, 0, 1))
Use the examples entering the upper and lower limits of integration.