Mister Exam

Integral of 2sincosxdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |  2*sin(cos(x)) dx
 |                  
/                   
0                   
012sin(cos(x))dx\int\limits_{0}^{1} 2 \sin{\left(\cos{\left(x \right)} \right)}\, dx
Integral(2*sin(cos(x)), (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    2sin(cos(x))dx=2sin(cos(x))dx\int 2 \sin{\left(\cos{\left(x \right)} \right)}\, dx = 2 \int \sin{\left(\cos{\left(x \right)} \right)}\, dx

    1. Don't know the steps in finding this integral.

      But the integral is

      sin(cos(x))dx\int \sin{\left(\cos{\left(x \right)} \right)}\, dx

    So, the result is: 2sin(cos(x))dx2 \int \sin{\left(\cos{\left(x \right)} \right)}\, dx

  2. Add the constant of integration:

    2sin(cos(x))dx+constant2 \int \sin{\left(\cos{\left(x \right)} \right)}\, dx+ \mathrm{constant}


The answer is:

2sin(cos(x))dx+constant2 \int \sin{\left(\cos{\left(x \right)} \right)}\, dx+ \mathrm{constant}

The answer (Indefinite) [src]
  /                           /              
 |                           |               
 | 2*sin(cos(x)) dx = C + 2* | sin(cos(x)) dx
 |                           |               
/                           /                
2sin(cos(x))dx=C+2sin(cos(x))dx\int 2 \sin{\left(\cos{\left(x \right)} \right)}\, dx = C + 2 \int \sin{\left(\cos{\left(x \right)} \right)}\, dx
The answer [src]
    1               
    /               
   |                
2* |  sin(cos(x)) dx
   |                
  /                 
  0                 
201sin(cos(x))dx2 \int\limits_{0}^{1} \sin{\left(\cos{\left(x \right)} \right)}\, dx
=
=
    1               
    /               
   |                
2* |  sin(cos(x)) dx
   |                
  /                 
  0                 
201sin(cos(x))dx2 \int\limits_{0}^{1} \sin{\left(\cos{\left(x \right)} \right)}\, dx
2*Integral(sin(cos(x)), (x, 0, 1))
Numerical answer [src]
1.47728599607378
1.47728599607378

    Use the examples entering the upper and lower limits of integration.