Mister Exam

Integral of 2sin6xsin2xdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                       
  /                       
 |                        
 |  2*sin(6*x)*sin(2*x) dx
 |                        
/                         
0                         
01sin(2x)2sin(6x)dx\int\limits_{0}^{1} \sin{\left(2 x \right)} 2 \sin{\left(6 x \right)}\, dx
Integral((2*sin(6*x))*sin(2*x), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=2xu = 2 x.

      Then let du=2dxdu = 2 dx and substitute dudu:

      sin(u)sin(3u)du\int \sin{\left(u \right)} \sin{\left(3 u \right)}\, du

      1. Rewrite the integrand:

        sin(3u)sin(u)=4sin4(u)+3sin2(u)\sin{\left(3 u \right)} \sin{\left(u \right)} = - 4 \sin^{4}{\left(u \right)} + 3 \sin^{2}{\left(u \right)}

      2. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          (4sin4(u))du=4sin4(u)du\int \left(- 4 \sin^{4}{\left(u \right)}\right)\, du = - 4 \int \sin^{4}{\left(u \right)}\, du

          1. Rewrite the integrand:

            sin4(u)=(12cos(2u)2)2\sin^{4}{\left(u \right)} = \left(\frac{1}{2} - \frac{\cos{\left(2 u \right)}}{2}\right)^{2}

          2. There are multiple ways to do this integral.

            Method #1

            1. Rewrite the integrand:

              (12cos(2u)2)2=cos2(2u)4cos(2u)2+14\left(\frac{1}{2} - \frac{\cos{\left(2 u \right)}}{2}\right)^{2} = \frac{\cos^{2}{\left(2 u \right)}}{4} - \frac{\cos{\left(2 u \right)}}{2} + \frac{1}{4}

            2. Integrate term-by-term:

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos2(2u)4du=cos2(2u)du4\int \frac{\cos^{2}{\left(2 u \right)}}{4}\, du = \frac{\int \cos^{2}{\left(2 u \right)}\, du}{4}

                1. Rewrite the integrand:

                  cos2(2u)=cos(4u)2+12\cos^{2}{\left(2 u \right)} = \frac{\cos{\left(4 u \right)}}{2} + \frac{1}{2}

                2. Integrate term-by-term:

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    cos(4u)2du=cos(4u)du2\int \frac{\cos{\left(4 u \right)}}{2}\, du = \frac{\int \cos{\left(4 u \right)}\, du}{2}

                    1. Let u=4uu = 4 u.

                      Then let du=4dudu = 4 du and substitute du4\frac{du}{4}:

                      cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

                      1. The integral of a constant times a function is the constant times the integral of the function:

                        cos(u)du=cos(u)du4\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

                        1. The integral of cosine is sine:

                          cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                        So, the result is: sin(u)4\frac{\sin{\left(u \right)}}{4}

                      Now substitute uu back in:

                      sin(4u)4\frac{\sin{\left(4 u \right)}}{4}

                    So, the result is: sin(4u)8\frac{\sin{\left(4 u \right)}}{8}

                  1. The integral of a constant is the constant times the variable of integration:

                    12du=u2\int \frac{1}{2}\, du = \frac{u}{2}

                  The result is: u2+sin(4u)8\frac{u}{2} + \frac{\sin{\left(4 u \right)}}{8}

                So, the result is: u8+sin(4u)32\frac{u}{8} + \frac{\sin{\left(4 u \right)}}{32}

              1. The integral of a constant times a function is the constant times the integral of the function:

                (cos(2u)2)du=cos(2u)du2\int \left(- \frac{\cos{\left(2 u \right)}}{2}\right)\, du = - \frac{\int \cos{\left(2 u \right)}\, du}{2}

                1. Let u=2uu = 2 u.

                  Then let du=2dudu = 2 du and substitute du2\frac{du}{2}:

                  cos(u)2du\int \frac{\cos{\left(u \right)}}{2}\, du

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    cos(u)du=cos(u)du2\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

                    1. The integral of cosine is sine:

                      cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                    So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

                  Now substitute uu back in:

                  sin(2u)2\frac{\sin{\left(2 u \right)}}{2}

                So, the result is: sin(2u)4- \frac{\sin{\left(2 u \right)}}{4}

              1. The integral of a constant is the constant times the variable of integration:

                14du=u4\int \frac{1}{4}\, du = \frac{u}{4}

              The result is: 3u8sin(2u)4+sin(4u)32\frac{3 u}{8} - \frac{\sin{\left(2 u \right)}}{4} + \frac{\sin{\left(4 u \right)}}{32}

            Method #2

            1. Rewrite the integrand:

              (12cos(2u)2)2=cos2(2u)4cos(2u)2+14\left(\frac{1}{2} - \frac{\cos{\left(2 u \right)}}{2}\right)^{2} = \frac{\cos^{2}{\left(2 u \right)}}{4} - \frac{\cos{\left(2 u \right)}}{2} + \frac{1}{4}

            2. Integrate term-by-term:

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos2(2u)4du=cos2(2u)du4\int \frac{\cos^{2}{\left(2 u \right)}}{4}\, du = \frac{\int \cos^{2}{\left(2 u \right)}\, du}{4}

                1. Rewrite the integrand:

                  cos2(2u)=cos(4u)2+12\cos^{2}{\left(2 u \right)} = \frac{\cos{\left(4 u \right)}}{2} + \frac{1}{2}

                2. Integrate term-by-term:

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    cos(4u)2du=cos(4u)du2\int \frac{\cos{\left(4 u \right)}}{2}\, du = \frac{\int \cos{\left(4 u \right)}\, du}{2}

                    1. Let u=4uu = 4 u.

                      Then let du=4dudu = 4 du and substitute du4\frac{du}{4}:

                      cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

                      1. The integral of a constant times a function is the constant times the integral of the function:

                        cos(u)du=cos(u)du4\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

                        1. The integral of cosine is sine:

                          cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                        So, the result is: sin(u)4\frac{\sin{\left(u \right)}}{4}

                      Now substitute uu back in:

                      sin(4u)4\frac{\sin{\left(4 u \right)}}{4}

                    So, the result is: sin(4u)8\frac{\sin{\left(4 u \right)}}{8}

                  1. The integral of a constant is the constant times the variable of integration:

                    12du=u2\int \frac{1}{2}\, du = \frac{u}{2}

                  The result is: u2+sin(4u)8\frac{u}{2} + \frac{\sin{\left(4 u \right)}}{8}

                So, the result is: u8+sin(4u)32\frac{u}{8} + \frac{\sin{\left(4 u \right)}}{32}

              1. The integral of a constant times a function is the constant times the integral of the function:

                (cos(2u)2)du=cos(2u)du2\int \left(- \frac{\cos{\left(2 u \right)}}{2}\right)\, du = - \frac{\int \cos{\left(2 u \right)}\, du}{2}

                1. Let u=2uu = 2 u.

                  Then let du=2dudu = 2 du and substitute du2\frac{du}{2}:

                  cos(u)2du\int \frac{\cos{\left(u \right)}}{2}\, du

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    cos(u)du=cos(u)du2\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

                    1. The integral of cosine is sine:

                      cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                    So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

                  Now substitute uu back in:

                  sin(2u)2\frac{\sin{\left(2 u \right)}}{2}

                So, the result is: sin(2u)4- \frac{\sin{\left(2 u \right)}}{4}

              1. The integral of a constant is the constant times the variable of integration:

                14du=u4\int \frac{1}{4}\, du = \frac{u}{4}

              The result is: 3u8sin(2u)4+sin(4u)32\frac{3 u}{8} - \frac{\sin{\left(2 u \right)}}{4} + \frac{\sin{\left(4 u \right)}}{32}

          So, the result is: 3u2+sin(2u)sin(4u)8- \frac{3 u}{2} + \sin{\left(2 u \right)} - \frac{\sin{\left(4 u \right)}}{8}

        1. The integral of a constant times a function is the constant times the integral of the function:

          3sin2(u)du=3sin2(u)du\int 3 \sin^{2}{\left(u \right)}\, du = 3 \int \sin^{2}{\left(u \right)}\, du

          1. Rewrite the integrand:

            sin2(u)=12cos(2u)2\sin^{2}{\left(u \right)} = \frac{1}{2} - \frac{\cos{\left(2 u \right)}}{2}

          2. Integrate term-by-term:

            1. The integral of a constant is the constant times the variable of integration:

              12du=u2\int \frac{1}{2}\, du = \frac{u}{2}

            1. The integral of a constant times a function is the constant times the integral of the function:

              (cos(2u)2)du=cos(2u)du2\int \left(- \frac{\cos{\left(2 u \right)}}{2}\right)\, du = - \frac{\int \cos{\left(2 u \right)}\, du}{2}

              1. Let u=2uu = 2 u.

                Then let du=2dudu = 2 du and substitute du2\frac{du}{2}:

                cos(u)2du\int \frac{\cos{\left(u \right)}}{2}\, du

                1. The integral of a constant times a function is the constant times the integral of the function:

                  cos(u)du=cos(u)du2\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

                  1. The integral of cosine is sine:

                    cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                  So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

                Now substitute uu back in:

                sin(2u)2\frac{\sin{\left(2 u \right)}}{2}

              So, the result is: sin(2u)4- \frac{\sin{\left(2 u \right)}}{4}

            The result is: u2sin(2u)4\frac{u}{2} - \frac{\sin{\left(2 u \right)}}{4}

          So, the result is: 3u23sin(2u)4\frac{3 u}{2} - \frac{3 \sin{\left(2 u \right)}}{4}

        The result is: sin(2u)4sin(4u)8\frac{\sin{\left(2 u \right)}}{4} - \frac{\sin{\left(4 u \right)}}{8}

      Now substitute uu back in:

      sin(4x)4sin(8x)8\frac{\sin{\left(4 x \right)}}{4} - \frac{\sin{\left(8 x \right)}}{8}

    Method #2

    1. The integral of a constant times a function is the constant times the integral of the function:

      4sin(x)sin(6x)cos(x)dx=4sin(x)sin(6x)cos(x)dx\int 4 \sin{\left(x \right)} \sin{\left(6 x \right)} \cos{\left(x \right)}\, dx = 4 \int \sin{\left(x \right)} \sin{\left(6 x \right)} \cos{\left(x \right)}\, dx

      1. Rewrite the integrand:

        sin(x)sin(6x)cos(x)=32sin6(x)cos2(x)32sin4(x)cos2(x)+6sin2(x)cos2(x)\sin{\left(x \right)} \sin{\left(6 x \right)} \cos{\left(x \right)} = 32 \sin^{6}{\left(x \right)} \cos^{2}{\left(x \right)} - 32 \sin^{4}{\left(x \right)} \cos^{2}{\left(x \right)} + 6 \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}

      2. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          32sin6(x)cos2(x)dx=32sin6(x)cos2(x)dx\int 32 \sin^{6}{\left(x \right)} \cos^{2}{\left(x \right)}\, dx = 32 \int \sin^{6}{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

          1. Rewrite the integrand:

            sin6(x)cos2(x)=(12cos(2x)2)3(cos(2x)2+12)\sin^{6}{\left(x \right)} \cos^{2}{\left(x \right)} = \left(\frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}\right)^{3} \left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)

          2. Let u=2xu = 2 x.

            Then let du=2dxdu = 2 dx and substitute dudu:

            (cos4(u)32+cos3(u)16cos(u)16+132)du\int \left(- \frac{\cos^{4}{\left(u \right)}}{32} + \frac{\cos^{3}{\left(u \right)}}{16} - \frac{\cos{\left(u \right)}}{16} + \frac{1}{32}\right)\, du

            1. Integrate term-by-term:

              1. The integral of a constant times a function is the constant times the integral of the function:

                (cos4(u)32)du=cos4(u)du32\int \left(- \frac{\cos^{4}{\left(u \right)}}{32}\right)\, du = - \frac{\int \cos^{4}{\left(u \right)}\, du}{32}

                1. Rewrite the integrand:

                  cos4(u)=(cos(2u)2+12)2\cos^{4}{\left(u \right)} = \left(\frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}\right)^{2}

                2. Rewrite the integrand:

                  (cos(2u)2+12)2=cos2(2u)4+cos(2u)2+14\left(\frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}\right)^{2} = \frac{\cos^{2}{\left(2 u \right)}}{4} + \frac{\cos{\left(2 u \right)}}{2} + \frac{1}{4}

                3. Integrate term-by-term:

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    cos2(2u)4du=cos2(2u)du4\int \frac{\cos^{2}{\left(2 u \right)}}{4}\, du = \frac{\int \cos^{2}{\left(2 u \right)}\, du}{4}

                    1. Rewrite the integrand:

                      cos2(2u)=cos(4u)2+12\cos^{2}{\left(2 u \right)} = \frac{\cos{\left(4 u \right)}}{2} + \frac{1}{2}

                    2. Integrate term-by-term:

                      1. The integral of a constant times a function is the constant times the integral of the function:

                        cos(4u)2du=cos(4u)du2\int \frac{\cos{\left(4 u \right)}}{2}\, du = \frac{\int \cos{\left(4 u \right)}\, du}{2}

                        1. Let u=4uu = 4 u.

                          Then let du=4dudu = 4 du and substitute du4\frac{du}{4}:

                          cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

                          1. The integral of a constant times a function is the constant times the integral of the function:

                            cos(u)du=cos(u)du4\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

                            1. The integral of cosine is sine:

                              cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                            So, the result is: sin(u)4\frac{\sin{\left(u \right)}}{4}

                          Now substitute uu back in:

                          sin(4u)4\frac{\sin{\left(4 u \right)}}{4}

                        So, the result is: sin(4u)8\frac{\sin{\left(4 u \right)}}{8}

                      1. The integral of a constant is the constant times the variable of integration:

                        12du=u2\int \frac{1}{2}\, du = \frac{u}{2}

                      The result is: u2+sin(4u)8\frac{u}{2} + \frac{\sin{\left(4 u \right)}}{8}

                    So, the result is: u8+sin(4u)32\frac{u}{8} + \frac{\sin{\left(4 u \right)}}{32}

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    cos(2u)2du=cos(2u)du2\int \frac{\cos{\left(2 u \right)}}{2}\, du = \frac{\int \cos{\left(2 u \right)}\, du}{2}

                    1. Let u=2uu = 2 u.

                      Then let du=2dudu = 2 du and substitute du2\frac{du}{2}:

                      cos(u)2du\int \frac{\cos{\left(u \right)}}{2}\, du

                      1. The integral of a constant times a function is the constant times the integral of the function:

                        cos(u)du=cos(u)du2\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

                        1. The integral of cosine is sine:

                          cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                        So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

                      Now substitute uu back in:

                      sin(2u)2\frac{\sin{\left(2 u \right)}}{2}

                    So, the result is: sin(2u)4\frac{\sin{\left(2 u \right)}}{4}

                  1. The integral of a constant is the constant times the variable of integration:

                    14du=u4\int \frac{1}{4}\, du = \frac{u}{4}

                  The result is: 3u8+sin(2u)4+sin(4u)32\frac{3 u}{8} + \frac{\sin{\left(2 u \right)}}{4} + \frac{\sin{\left(4 u \right)}}{32}

                So, the result is: 3u256sin(2u)128sin(4u)1024- \frac{3 u}{256} - \frac{\sin{\left(2 u \right)}}{128} - \frac{\sin{\left(4 u \right)}}{1024}

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos3(u)16du=cos3(u)du16\int \frac{\cos^{3}{\left(u \right)}}{16}\, du = \frac{\int \cos^{3}{\left(u \right)}\, du}{16}

                1. Rewrite the integrand:

                  cos3(u)=(1sin2(u))cos(u)\cos^{3}{\left(u \right)} = \left(1 - \sin^{2}{\left(u \right)}\right) \cos{\left(u \right)}

                2. Let u=sin(u)u = \sin{\left(u \right)}.

                  Then let du=cos(u)dudu = \cos{\left(u \right)} du and substitute dudu:

                  (1u2)du\int \left(1 - u^{2}\right)\, du

                  1. Integrate term-by-term:

                    1. The integral of a constant is the constant times the variable of integration:

                      1du=u\int 1\, du = u

                    1. The integral of a constant times a function is the constant times the integral of the function:

                      (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

                      1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                        u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                      So, the result is: u33- \frac{u^{3}}{3}

                    The result is: u33+u- \frac{u^{3}}{3} + u

                  Now substitute uu back in:

                  sin3(u)3+sin(u)- \frac{\sin^{3}{\left(u \right)}}{3} + \sin{\left(u \right)}

                So, the result is: sin3(u)48+sin(u)16- \frac{\sin^{3}{\left(u \right)}}{48} + \frac{\sin{\left(u \right)}}{16}

              1. The integral of a constant times a function is the constant times the integral of the function:

                (cos(u)16)du=cos(u)du16\int \left(- \frac{\cos{\left(u \right)}}{16}\right)\, du = - \frac{\int \cos{\left(u \right)}\, du}{16}

                1. The integral of cosine is sine:

                  cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                So, the result is: sin(u)16- \frac{\sin{\left(u \right)}}{16}

              1. The integral of a constant is the constant times the variable of integration:

                132du=u32\int \frac{1}{32}\, du = \frac{u}{32}

              The result is: 5u256sin(2u)128sin(4u)1024sin3(u)48\frac{5 u}{256} - \frac{\sin{\left(2 u \right)}}{128} - \frac{\sin{\left(4 u \right)}}{1024} - \frac{\sin^{3}{\left(u \right)}}{48}

            Now substitute uu back in:

            5x128sin3(2x)48sin(4x)128sin(8x)1024\frac{5 x}{128} - \frac{\sin^{3}{\left(2 x \right)}}{48} - \frac{\sin{\left(4 x \right)}}{128} - \frac{\sin{\left(8 x \right)}}{1024}

          So, the result is: 5x42sin3(2x)3sin(4x)4sin(8x)32\frac{5 x}{4} - \frac{2 \sin^{3}{\left(2 x \right)}}{3} - \frac{\sin{\left(4 x \right)}}{4} - \frac{\sin{\left(8 x \right)}}{32}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (32sin4(x)cos2(x))dx=32sin4(x)cos2(x)dx\int \left(- 32 \sin^{4}{\left(x \right)} \cos^{2}{\left(x \right)}\right)\, dx = - 32 \int \sin^{4}{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

          1. Rewrite the integrand:

            sin4(x)cos2(x)=(12cos(2x)2)2(cos(2x)2+12)\sin^{4}{\left(x \right)} \cos^{2}{\left(x \right)} = \left(\frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}\right)^{2} \left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)

          2. Let u=2xu = 2 x.

            Then let du=2dxdu = 2 dx and substitute dudu:

            (cos3(u)16cos2(u)16cos(u)16+116)du\int \left(\frac{\cos^{3}{\left(u \right)}}{16} - \frac{\cos^{2}{\left(u \right)}}{16} - \frac{\cos{\left(u \right)}}{16} + \frac{1}{16}\right)\, du

            1. Integrate term-by-term:

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos3(u)16du=cos3(u)du16\int \frac{\cos^{3}{\left(u \right)}}{16}\, du = \frac{\int \cos^{3}{\left(u \right)}\, du}{16}

                1. Rewrite the integrand:

                  cos3(u)=(1sin2(u))cos(u)\cos^{3}{\left(u \right)} = \left(1 - \sin^{2}{\left(u \right)}\right) \cos{\left(u \right)}

                2. Let u=sin(u)u = \sin{\left(u \right)}.

                  Then let du=cos(u)dudu = \cos{\left(u \right)} du and substitute dudu:

                  (1u2)du\int \left(1 - u^{2}\right)\, du

                  1. Integrate term-by-term:

                    1. The integral of a constant is the constant times the variable of integration:

                      1du=u\int 1\, du = u

                    1. The integral of a constant times a function is the constant times the integral of the function:

                      (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

                      1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                        u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                      So, the result is: u33- \frac{u^{3}}{3}

                    The result is: u33+u- \frac{u^{3}}{3} + u

                  Now substitute uu back in:

                  sin3(u)3+sin(u)- \frac{\sin^{3}{\left(u \right)}}{3} + \sin{\left(u \right)}

                So, the result is: sin3(u)48+sin(u)16- \frac{\sin^{3}{\left(u \right)}}{48} + \frac{\sin{\left(u \right)}}{16}

              1. The integral of a constant times a function is the constant times the integral of the function:

                (cos2(u)16)du=cos2(u)du16\int \left(- \frac{\cos^{2}{\left(u \right)}}{16}\right)\, du = - \frac{\int \cos^{2}{\left(u \right)}\, du}{16}

                1. Rewrite the integrand:

                  cos2(u)=cos(2u)2+12\cos^{2}{\left(u \right)} = \frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}

                2. Integrate term-by-term:

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    cos(2u)2du=cos(2u)du2\int \frac{\cos{\left(2 u \right)}}{2}\, du = \frac{\int \cos{\left(2 u \right)}\, du}{2}

                    1. Let u=2uu = 2 u.

                      Then let du=2dudu = 2 du and substitute du2\frac{du}{2}:

                      cos(u)2du\int \frac{\cos{\left(u \right)}}{2}\, du

                      1. The integral of a constant times a function is the constant times the integral of the function:

                        cos(u)du=cos(u)du2\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

                        1. The integral of cosine is sine:

                          cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                        So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

                      Now substitute uu back in:

                      sin(2u)2\frac{\sin{\left(2 u \right)}}{2}

                    So, the result is: sin(2u)4\frac{\sin{\left(2 u \right)}}{4}

                  1. The integral of a constant is the constant times the variable of integration:

                    12du=u2\int \frac{1}{2}\, du = \frac{u}{2}

                  The result is: u2+sin(2u)4\frac{u}{2} + \frac{\sin{\left(2 u \right)}}{4}

                So, the result is: u32sin(2u)64- \frac{u}{32} - \frac{\sin{\left(2 u \right)}}{64}

              1. The integral of a constant times a function is the constant times the integral of the function:

                (cos(u)16)du=cos(u)du16\int \left(- \frac{\cos{\left(u \right)}}{16}\right)\, du = - \frac{\int \cos{\left(u \right)}\, du}{16}

                1. The integral of cosine is sine:

                  cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                So, the result is: sin(u)16- \frac{\sin{\left(u \right)}}{16}

              1. The integral of a constant is the constant times the variable of integration:

                116du=u16\int \frac{1}{16}\, du = \frac{u}{16}

              The result is: u32sin(2u)64sin3(u)48\frac{u}{32} - \frac{\sin{\left(2 u \right)}}{64} - \frac{\sin^{3}{\left(u \right)}}{48}

            Now substitute uu back in:

            x16sin3(2x)48sin(4x)64\frac{x}{16} - \frac{\sin^{3}{\left(2 x \right)}}{48} - \frac{\sin{\left(4 x \right)}}{64}

          So, the result is: 2x+2sin3(2x)3+sin(4x)2- 2 x + \frac{2 \sin^{3}{\left(2 x \right)}}{3} + \frac{\sin{\left(4 x \right)}}{2}

        1. The integral of a constant times a function is the constant times the integral of the function:

          6sin2(x)cos2(x)dx=6sin2(x)cos2(x)dx\int 6 \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}\, dx = 6 \int \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

          1. Rewrite the integrand:

            sin2(x)cos2(x)=(12cos(2x)2)(cos(2x)2+12)\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)} = \left(\frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}\right) \left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)

          2. Let u=2xu = 2 x.

            Then let du=2dxdu = 2 dx and substitute dudu:

            (18cos2(u)8)du\int \left(\frac{1}{8} - \frac{\cos^{2}{\left(u \right)}}{8}\right)\, du

            1. Integrate term-by-term:

              1. The integral of a constant is the constant times the variable of integration:

                18du=u8\int \frac{1}{8}\, du = \frac{u}{8}

              1. The integral of a constant times a function is the constant times the integral of the function:

                (cos2(u)8)du=cos2(u)du8\int \left(- \frac{\cos^{2}{\left(u \right)}}{8}\right)\, du = - \frac{\int \cos^{2}{\left(u \right)}\, du}{8}

                1. Rewrite the integrand:

                  cos2(u)=cos(2u)2+12\cos^{2}{\left(u \right)} = \frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}

                2. Integrate term-by-term:

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    cos(2u)2du=cos(2u)du2\int \frac{\cos{\left(2 u \right)}}{2}\, du = \frac{\int \cos{\left(2 u \right)}\, du}{2}

                    1. Let u=2uu = 2 u.

                      Then let du=2dudu = 2 du and substitute du2\frac{du}{2}:

                      cos(u)2du\int \frac{\cos{\left(u \right)}}{2}\, du

                      1. The integral of a constant times a function is the constant times the integral of the function:

                        cos(u)du=cos(u)du2\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

                        1. The integral of cosine is sine:

                          cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                        So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

                      Now substitute uu back in:

                      sin(2u)2\frac{\sin{\left(2 u \right)}}{2}

                    So, the result is: sin(2u)4\frac{\sin{\left(2 u \right)}}{4}

                  1. The integral of a constant is the constant times the variable of integration:

                    12du=u2\int \frac{1}{2}\, du = \frac{u}{2}

                  The result is: u2+sin(2u)4\frac{u}{2} + \frac{\sin{\left(2 u \right)}}{4}

                So, the result is: u16sin(2u)32- \frac{u}{16} - \frac{\sin{\left(2 u \right)}}{32}

              The result is: u16sin(2u)32\frac{u}{16} - \frac{\sin{\left(2 u \right)}}{32}

            Now substitute uu back in:

            x8sin(4x)32\frac{x}{8} - \frac{\sin{\left(4 x \right)}}{32}

          So, the result is: 3x43sin(4x)16\frac{3 x}{4} - \frac{3 \sin{\left(4 x \right)}}{16}

        The result is: sin(4x)16sin(8x)32\frac{\sin{\left(4 x \right)}}{16} - \frac{\sin{\left(8 x \right)}}{32}

      So, the result is: sin(4x)4sin(8x)8\frac{\sin{\left(4 x \right)}}{4} - \frac{\sin{\left(8 x \right)}}{8}

    Method #3

    1. Rewrite the integrand:

      sin(2x)2sin(6x)=128sin6(x)cos2(x)128sin4(x)cos2(x)+24sin2(x)cos2(x)\sin{\left(2 x \right)} 2 \sin{\left(6 x \right)} = 128 \sin^{6}{\left(x \right)} \cos^{2}{\left(x \right)} - 128 \sin^{4}{\left(x \right)} \cos^{2}{\left(x \right)} + 24 \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        128sin6(x)cos2(x)dx=128sin6(x)cos2(x)dx\int 128 \sin^{6}{\left(x \right)} \cos^{2}{\left(x \right)}\, dx = 128 \int \sin^{6}{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

        1. Rewrite the integrand:

          sin6(x)cos2(x)=(12cos(2x)2)3(cos(2x)2+12)\sin^{6}{\left(x \right)} \cos^{2}{\left(x \right)} = \left(\frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}\right)^{3} \left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)

        2. Let u=2xu = 2 x.

          Then let du=2dxdu = 2 dx and substitute dudu:

          (cos4(u)32+cos3(u)16cos(u)16+132)du\int \left(- \frac{\cos^{4}{\left(u \right)}}{32} + \frac{\cos^{3}{\left(u \right)}}{16} - \frac{\cos{\left(u \right)}}{16} + \frac{1}{32}\right)\, du

          1. Integrate term-by-term:

            1. The integral of a constant times a function is the constant times the integral of the function:

              (cos4(u)32)du=cos4(u)du32\int \left(- \frac{\cos^{4}{\left(u \right)}}{32}\right)\, du = - \frac{\int \cos^{4}{\left(u \right)}\, du}{32}

              1. Rewrite the integrand:

                cos4(u)=(cos(2u)2+12)2\cos^{4}{\left(u \right)} = \left(\frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}\right)^{2}

              2. Rewrite the integrand:

                (cos(2u)2+12)2=cos2(2u)4+cos(2u)2+14\left(\frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}\right)^{2} = \frac{\cos^{2}{\left(2 u \right)}}{4} + \frac{\cos{\left(2 u \right)}}{2} + \frac{1}{4}

              3. Integrate term-by-term:

                1. The integral of a constant times a function is the constant times the integral of the function:

                  cos2(2u)4du=cos2(2u)du4\int \frac{\cos^{2}{\left(2 u \right)}}{4}\, du = \frac{\int \cos^{2}{\left(2 u \right)}\, du}{4}

                  1. Rewrite the integrand:

                    cos2(2u)=cos(4u)2+12\cos^{2}{\left(2 u \right)} = \frac{\cos{\left(4 u \right)}}{2} + \frac{1}{2}

                  2. Integrate term-by-term:

                    1. The integral of a constant times a function is the constant times the integral of the function:

                      cos(4u)2du=cos(4u)du2\int \frac{\cos{\left(4 u \right)}}{2}\, du = \frac{\int \cos{\left(4 u \right)}\, du}{2}

                      1. Let u=4uu = 4 u.

                        Then let du=4dudu = 4 du and substitute du4\frac{du}{4}:

                        cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

                        1. The integral of a constant times a function is the constant times the integral of the function:

                          cos(u)du=cos(u)du4\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

                          1. The integral of cosine is sine:

                            cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                          So, the result is: sin(u)4\frac{\sin{\left(u \right)}}{4}

                        Now substitute uu back in:

                        sin(4u)4\frac{\sin{\left(4 u \right)}}{4}

                      So, the result is: sin(4u)8\frac{\sin{\left(4 u \right)}}{8}

                    1. The integral of a constant is the constant times the variable of integration:

                      12du=u2\int \frac{1}{2}\, du = \frac{u}{2}

                    The result is: u2+sin(4u)8\frac{u}{2} + \frac{\sin{\left(4 u \right)}}{8}

                  So, the result is: u8+sin(4u)32\frac{u}{8} + \frac{\sin{\left(4 u \right)}}{32}

                1. The integral of a constant times a function is the constant times the integral of the function:

                  cos(2u)2du=cos(2u)du2\int \frac{\cos{\left(2 u \right)}}{2}\, du = \frac{\int \cos{\left(2 u \right)}\, du}{2}

                  1. Let u=2uu = 2 u.

                    Then let du=2dudu = 2 du and substitute du2\frac{du}{2}:

                    cos(u)2du\int \frac{\cos{\left(u \right)}}{2}\, du

                    1. The integral of a constant times a function is the constant times the integral of the function:

                      cos(u)du=cos(u)du2\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

                      1. The integral of cosine is sine:

                        cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                      So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

                    Now substitute uu back in:

                    sin(2u)2\frac{\sin{\left(2 u \right)}}{2}

                  So, the result is: sin(2u)4\frac{\sin{\left(2 u \right)}}{4}

                1. The integral of a constant is the constant times the variable of integration:

                  14du=u4\int \frac{1}{4}\, du = \frac{u}{4}

                The result is: 3u8+sin(2u)4+sin(4u)32\frac{3 u}{8} + \frac{\sin{\left(2 u \right)}}{4} + \frac{\sin{\left(4 u \right)}}{32}

              So, the result is: 3u256sin(2u)128sin(4u)1024- \frac{3 u}{256} - \frac{\sin{\left(2 u \right)}}{128} - \frac{\sin{\left(4 u \right)}}{1024}

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos3(u)16du=cos3(u)du16\int \frac{\cos^{3}{\left(u \right)}}{16}\, du = \frac{\int \cos^{3}{\left(u \right)}\, du}{16}

              1. Rewrite the integrand:

                cos3(u)=(1sin2(u))cos(u)\cos^{3}{\left(u \right)} = \left(1 - \sin^{2}{\left(u \right)}\right) \cos{\left(u \right)}

              2. Let u=sin(u)u = \sin{\left(u \right)}.

                Then let du=cos(u)dudu = \cos{\left(u \right)} du and substitute dudu:

                (1u2)du\int \left(1 - u^{2}\right)\, du

                1. Integrate term-by-term:

                  1. The integral of a constant is the constant times the variable of integration:

                    1du=u\int 1\, du = u

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

                    1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                      u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                    So, the result is: u33- \frac{u^{3}}{3}

                  The result is: u33+u- \frac{u^{3}}{3} + u

                Now substitute uu back in:

                sin3(u)3+sin(u)- \frac{\sin^{3}{\left(u \right)}}{3} + \sin{\left(u \right)}

              So, the result is: sin3(u)48+sin(u)16- \frac{\sin^{3}{\left(u \right)}}{48} + \frac{\sin{\left(u \right)}}{16}

            1. The integral of a constant times a function is the constant times the integral of the function:

              (cos(u)16)du=cos(u)du16\int \left(- \frac{\cos{\left(u \right)}}{16}\right)\, du = - \frac{\int \cos{\left(u \right)}\, du}{16}

              1. The integral of cosine is sine:

                cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

              So, the result is: sin(u)16- \frac{\sin{\left(u \right)}}{16}

            1. The integral of a constant is the constant times the variable of integration:

              132du=u32\int \frac{1}{32}\, du = \frac{u}{32}

            The result is: 5u256sin(2u)128sin(4u)1024sin3(u)48\frac{5 u}{256} - \frac{\sin{\left(2 u \right)}}{128} - \frac{\sin{\left(4 u \right)}}{1024} - \frac{\sin^{3}{\left(u \right)}}{48}

          Now substitute uu back in:

          5x128sin3(2x)48sin(4x)128sin(8x)1024\frac{5 x}{128} - \frac{\sin^{3}{\left(2 x \right)}}{48} - \frac{\sin{\left(4 x \right)}}{128} - \frac{\sin{\left(8 x \right)}}{1024}

        So, the result is: 5x8sin3(2x)3sin(4x)sin(8x)85 x - \frac{8 \sin^{3}{\left(2 x \right)}}{3} - \sin{\left(4 x \right)} - \frac{\sin{\left(8 x \right)}}{8}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (128sin4(x)cos2(x))dx=128sin4(x)cos2(x)dx\int \left(- 128 \sin^{4}{\left(x \right)} \cos^{2}{\left(x \right)}\right)\, dx = - 128 \int \sin^{4}{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

        1. Rewrite the integrand:

          sin4(x)cos2(x)=(12cos(2x)2)2(cos(2x)2+12)\sin^{4}{\left(x \right)} \cos^{2}{\left(x \right)} = \left(\frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}\right)^{2} \left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)

        2. Let u=2xu = 2 x.

          Then let du=2dxdu = 2 dx and substitute dudu:

          (cos3(u)16cos2(u)16cos(u)16+116)du\int \left(\frac{\cos^{3}{\left(u \right)}}{16} - \frac{\cos^{2}{\left(u \right)}}{16} - \frac{\cos{\left(u \right)}}{16} + \frac{1}{16}\right)\, du

          1. Integrate term-by-term:

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos3(u)16du=cos3(u)du16\int \frac{\cos^{3}{\left(u \right)}}{16}\, du = \frac{\int \cos^{3}{\left(u \right)}\, du}{16}

              1. Rewrite the integrand:

                cos3(u)=(1sin2(u))cos(u)\cos^{3}{\left(u \right)} = \left(1 - \sin^{2}{\left(u \right)}\right) \cos{\left(u \right)}

              2. Let u=sin(u)u = \sin{\left(u \right)}.

                Then let du=cos(u)dudu = \cos{\left(u \right)} du and substitute dudu:

                (1u2)du\int \left(1 - u^{2}\right)\, du

                1. Integrate term-by-term:

                  1. The integral of a constant is the constant times the variable of integration:

                    1du=u\int 1\, du = u

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

                    1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                      u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                    So, the result is: u33- \frac{u^{3}}{3}

                  The result is: u33+u- \frac{u^{3}}{3} + u

                Now substitute uu back in:

                sin3(u)3+sin(u)- \frac{\sin^{3}{\left(u \right)}}{3} + \sin{\left(u \right)}

              So, the result is: sin3(u)48+sin(u)16- \frac{\sin^{3}{\left(u \right)}}{48} + \frac{\sin{\left(u \right)}}{16}

            1. The integral of a constant times a function is the constant times the integral of the function:

              (cos2(u)16)du=cos2(u)du16\int \left(- \frac{\cos^{2}{\left(u \right)}}{16}\right)\, du = - \frac{\int \cos^{2}{\left(u \right)}\, du}{16}

              1. Rewrite the integrand:

                cos2(u)=cos(2u)2+12\cos^{2}{\left(u \right)} = \frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}

              2. Integrate term-by-term:

                1. The integral of a constant times a function is the constant times the integral of the function:

                  cos(2u)2du=cos(2u)du2\int \frac{\cos{\left(2 u \right)}}{2}\, du = \frac{\int \cos{\left(2 u \right)}\, du}{2}

                  1. Let u=2uu = 2 u.

                    Then let du=2dudu = 2 du and substitute du2\frac{du}{2}:

                    cos(u)2du\int \frac{\cos{\left(u \right)}}{2}\, du

                    1. The integral of a constant times a function is the constant times the integral of the function:

                      cos(u)du=cos(u)du2\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

                      1. The integral of cosine is sine:

                        cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                      So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

                    Now substitute uu back in:

                    sin(2u)2\frac{\sin{\left(2 u \right)}}{2}

                  So, the result is: sin(2u)4\frac{\sin{\left(2 u \right)}}{4}

                1. The integral of a constant is the constant times the variable of integration:

                  12du=u2\int \frac{1}{2}\, du = \frac{u}{2}

                The result is: u2+sin(2u)4\frac{u}{2} + \frac{\sin{\left(2 u \right)}}{4}

              So, the result is: u32sin(2u)64- \frac{u}{32} - \frac{\sin{\left(2 u \right)}}{64}

            1. The integral of a constant times a function is the constant times the integral of the function:

              (cos(u)16)du=cos(u)du16\int \left(- \frac{\cos{\left(u \right)}}{16}\right)\, du = - \frac{\int \cos{\left(u \right)}\, du}{16}

              1. The integral of cosine is sine:

                cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

              So, the result is: sin(u)16- \frac{\sin{\left(u \right)}}{16}

            1. The integral of a constant is the constant times the variable of integration:

              116du=u16\int \frac{1}{16}\, du = \frac{u}{16}

            The result is: u32sin(2u)64sin3(u)48\frac{u}{32} - \frac{\sin{\left(2 u \right)}}{64} - \frac{\sin^{3}{\left(u \right)}}{48}

          Now substitute uu back in:

          x16sin3(2x)48sin(4x)64\frac{x}{16} - \frac{\sin^{3}{\left(2 x \right)}}{48} - \frac{\sin{\left(4 x \right)}}{64}

        So, the result is: 8x+8sin3(2x)3+2sin(4x)- 8 x + \frac{8 \sin^{3}{\left(2 x \right)}}{3} + 2 \sin{\left(4 x \right)}

      1. The integral of a constant times a function is the constant times the integral of the function:

        24sin2(x)cos2(x)dx=24sin2(x)cos2(x)dx\int 24 \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}\, dx = 24 \int \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

        1. Rewrite the integrand:

          sin2(x)cos2(x)=(12cos(2x)2)(cos(2x)2+12)\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)} = \left(\frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}\right) \left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)

        2. Let u=2xu = 2 x.

          Then let du=2dxdu = 2 dx and substitute dudu:

          (18cos2(u)8)du\int \left(\frac{1}{8} - \frac{\cos^{2}{\left(u \right)}}{8}\right)\, du

          1. Integrate term-by-term:

            1. The integral of a constant is the constant times the variable of integration:

              18du=u8\int \frac{1}{8}\, du = \frac{u}{8}

            1. The integral of a constant times a function is the constant times the integral of the function:

              (cos2(u)8)du=cos2(u)du8\int \left(- \frac{\cos^{2}{\left(u \right)}}{8}\right)\, du = - \frac{\int \cos^{2}{\left(u \right)}\, du}{8}

              1. Rewrite the integrand:

                cos2(u)=cos(2u)2+12\cos^{2}{\left(u \right)} = \frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}

              2. Integrate term-by-term:

                1. The integral of a constant times a function is the constant times the integral of the function:

                  cos(2u)2du=cos(2u)du2\int \frac{\cos{\left(2 u \right)}}{2}\, du = \frac{\int \cos{\left(2 u \right)}\, du}{2}

                  1. Let u=2uu = 2 u.

                    Then let du=2dudu = 2 du and substitute du2\frac{du}{2}:

                    cos(u)2du\int \frac{\cos{\left(u \right)}}{2}\, du

                    1. The integral of a constant times a function is the constant times the integral of the function:

                      cos(u)du=cos(u)du2\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

                      1. The integral of cosine is sine:

                        cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                      So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

                    Now substitute uu back in:

                    sin(2u)2\frac{\sin{\left(2 u \right)}}{2}

                  So, the result is: sin(2u)4\frac{\sin{\left(2 u \right)}}{4}

                1. The integral of a constant is the constant times the variable of integration:

                  12du=u2\int \frac{1}{2}\, du = \frac{u}{2}

                The result is: u2+sin(2u)4\frac{u}{2} + \frac{\sin{\left(2 u \right)}}{4}

              So, the result is: u16sin(2u)32- \frac{u}{16} - \frac{\sin{\left(2 u \right)}}{32}

            The result is: u16sin(2u)32\frac{u}{16} - \frac{\sin{\left(2 u \right)}}{32}

          Now substitute uu back in:

          x8sin(4x)32\frac{x}{8} - \frac{\sin{\left(4 x \right)}}{32}

        So, the result is: 3x3sin(4x)43 x - \frac{3 \sin{\left(4 x \right)}}{4}

      The result is: sin(4x)4sin(8x)8\frac{\sin{\left(4 x \right)}}{4} - \frac{\sin{\left(8 x \right)}}{8}

  2. Add the constant of integration:

    sin(4x)4sin(8x)8+constant\frac{\sin{\left(4 x \right)}}{4} - \frac{\sin{\left(8 x \right)}}{8}+ \mathrm{constant}


The answer is:

sin(4x)4sin(8x)8+constant\frac{\sin{\left(4 x \right)}}{4} - \frac{\sin{\left(8 x \right)}}{8}+ \mathrm{constant}

The graph
0.001.000.100.200.300.400.500.600.700.800.905-5
The answer [src]
  3*cos(6)*sin(2)   cos(2)*sin(6)
- --------------- + -------------
         8                8      
3sin(2)cos(6)8+sin(6)cos(2)8- \frac{3 \sin{\left(2 \right)} \cos{\left(6 \right)}}{8} + \frac{\sin{\left(6 \right)} \cos{\left(2 \right)}}{8}
=
=
  3*cos(6)*sin(2)   cos(2)*sin(6)
- --------------- + -------------
         8                8      
3sin(2)cos(6)8+sin(6)cos(2)8- \frac{3 \sin{\left(2 \right)} \cos{\left(6 \right)}}{8} + \frac{\sin{\left(6 \right)} \cos{\left(2 \right)}}{8}
-3*cos(6)*sin(2)/8 + cos(2)*sin(6)/8
Numerical answer [src]
-0.312870404654905
-0.312870404654905

    Use the examples entering the upper and lower limits of integration.