1 / | | 2 | 2*sin (x) dx | / 0
Integral(2*sin(x)^2, (x, 0, 1))
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant is the constant times the variable of integration:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
Now substitute back in:
So, the result is:
The result is:
So, the result is:
Add the constant of integration:
The answer is:
/ | | 2 sin(2*x) | 2*sin (x) dx = C + x - -------- | 2 /
1 - cos(1)*sin(1)
=
1 - cos(1)*sin(1)
1 - cos(1)*sin(1)
Use the examples entering the upper and lower limits of integration.