Mister Exam

Integral of (2cosx+3sinx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                         
  /                         
 |                          
 |  (2*cos(x) + 3*sin(x)) dx
 |                          
/                           
0                           
$$\int\limits_{0}^{1} \left(3 \sin{\left(x \right)} + 2 \cos{\left(x \right)}\right)\, dx$$
Integral(2*cos(x) + 3*sin(x), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of sine is negative cosine:

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of cosine is sine:

      So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                  
 |                                                   
 | (2*cos(x) + 3*sin(x)) dx = C - 3*cos(x) + 2*sin(x)
 |                                                   
/                                                    
$$\int \left(3 \sin{\left(x \right)} + 2 \cos{\left(x \right)}\right)\, dx = C + 2 \sin{\left(x \right)} - 3 \cos{\left(x \right)}$$
The graph
The answer [src]
3 - 3*cos(1) + 2*sin(1)
$$- 3 \cos{\left(1 \right)} + 2 \sin{\left(1 \right)} + 3$$
=
=
3 - 3*cos(1) + 2*sin(1)
$$- 3 \cos{\left(1 \right)} + 2 \sin{\left(1 \right)} + 3$$
3 - 3*cos(1) + 2*sin(1)
Numerical answer [src]
3.06203505201137
3.06203505201137

    Use the examples entering the upper and lower limits of integration.