Mister Exam

Other calculators

Integral of 2cosx-2sqrt(3)sinx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                               
 --                               
 6                                
  /                               
 |                                
 |  /               ___       \   
 |  \2*cos(x) - 2*\/ 3 *sin(x)/ dx
 |                                
/                                 
0                                 
$$\int\limits_{0}^{\frac{\pi}{6}} \left(- 2 \sqrt{3} \sin{\left(x \right)} + 2 \cos{\left(x \right)}\right)\, dx$$
Integral(2*cos(x) - 2*sqrt(3)*sin(x), (x, 0, pi/6))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of sine is negative cosine:

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of cosine is sine:

      So, the result is:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                              
 |                                                               
 | /               ___       \                         ___       
 | \2*cos(x) - 2*\/ 3 *sin(x)/ dx = C + 2*sin(x) + 2*\/ 3 *cos(x)
 |                                                               
/                                                                
$$\int \left(- 2 \sqrt{3} \sin{\left(x \right)} + 2 \cos{\left(x \right)}\right)\, dx = C + 2 \sin{\left(x \right)} + 2 \sqrt{3} \cos{\left(x \right)}$$
The graph
The answer [src]
        ___
4 - 2*\/ 3 
$$4 - 2 \sqrt{3}$$
=
=
        ___
4 - 2*\/ 3 
$$4 - 2 \sqrt{3}$$
4 - 2*sqrt(3)
Numerical answer [src]
0.535898384862245
0.535898384862245

    Use the examples entering the upper and lower limits of integration.