Mister Exam

Other calculators

Integral of 2cos^2x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 157            
 ---            
 100            
  /             
 |              
 |       2      
 |  2*cos (x) dx
 |              
/               
0               
$$\int\limits_{0}^{\frac{157}{100}} 2 \cos^{2}{\left(x \right)}\, dx$$
Integral(2*cos(x)^2, (x, 0, 157/100))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of cosine is sine:

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant is the constant times the variable of integration:

      The result is:

    So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                               
 |                                
 |      2                 sin(2*x)
 | 2*cos (x) dx = C + x + --------
 |                           2    
/                                 
$$\int 2 \cos^{2}{\left(x \right)}\, dx = C + x + \frac{\sin{\left(2 x \right)}}{2}$$
The graph
The answer [src]
157      /157\    /157\
--- + cos|---|*sin|---|
100      \100/    \100/
$$\sin{\left(\frac{157}{100} \right)} \cos{\left(\frac{157}{100} \right)} + \frac{157}{100}$$
=
=
157      /157\    /157\
--- + cos|---|*sin|---|
100      \100/    \100/
$$\sin{\left(\frac{157}{100} \right)} \cos{\left(\frac{157}{100} \right)} + \frac{157}{100}$$
157/100 + cos(157/100)*sin(157/100)
Numerical answer [src]
1.57079632645824
1.57079632645824

    Use the examples entering the upper and lower limits of integration.