Mister Exam

Other calculators

Integral of (2cos(ln(x)+5))/x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |  2*cos(log(x) + 5)   
 |  ----------------- dx
 |          x           
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \frac{2 \cos{\left(\log{\left(x \right)} + 5 \right)}}{x}\, dx$$
Integral((2*cos(log(x) + 5))/x, (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of cosine is sine:

        So, the result is:

      Now substitute back in:

    Method #2

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. Let .

              Then let and substitute :

              1. The integral of cosine is sine:

              Now substitute back in:

            So, the result is:

          Now substitute back in:

        So, the result is:

      Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                            
 |                                             
 | 2*cos(log(x) + 5)                           
 | ----------------- dx = C + 2*sin(log(x) + 5)
 |         x                                   
 |                                             
/                                              
$$\int \frac{2 \cos{\left(\log{\left(x \right)} + 5 \right)}}{x}\, dx = C + 2 \sin{\left(\log{\left(x \right)} + 5 \right)}$$
The answer [src]
<-2 + 2*sin(5), 2 + 2*sin(5)>
$$\left\langle -2 + 2 \sin{\left(5 \right)}, 2 \sin{\left(5 \right)} + 2\right\rangle$$
=
=
<-2 + 2*sin(5), 2 + 2*sin(5)>
$$\left\langle -2 + 2 \sin{\left(5 \right)}, 2 \sin{\left(5 \right)} + 2\right\rangle$$
AccumBounds(-2 + 2*sin(5), 2 + 2*sin(5))
Numerical answer [src]
0.0895756425026216
0.0895756425026216

    Use the examples entering the upper and lower limits of integration.