Mister Exam

Integral of 27x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1        
  /        
 |         
 |  27*x dx
 |         
/          
0          
0127xdx\int\limits_{0}^{1} 27 x\, dx
Integral(27*x, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    27xdx=27xdx\int 27 x\, dx = 27 \int x\, dx

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      xdx=x22\int x\, dx = \frac{x^{2}}{2}

    So, the result is: 27x22\frac{27 x^{2}}{2}

  2. Add the constant of integration:

    27x22+constant\frac{27 x^{2}}{2}+ \mathrm{constant}


The answer is:

27x22+constant\frac{27 x^{2}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                  2
 |               27*x 
 | 27*x dx = C + -----
 |                 2  
/                     
27xdx=C+27x22\int 27 x\, dx = C + \frac{27 x^{2}}{2}
The graph
0.001.000.100.200.300.400.500.600.700.800.90050
The answer [src]
27/2
272\frac{27}{2}
=
=
27/2
272\frac{27}{2}
27/2
Numerical answer [src]
13.5
13.5

    Use the examples entering the upper and lower limits of integration.