Mister Exam

Integral of 25x² dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2         
  /         
 |          
 |      2   
 |  25*x  dx
 |          
/           
-1          
1225x2dx\int\limits_{-1}^{2} 25 x^{2}\, dx
Integral(25*x^2, (x, -1, 2))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    25x2dx=25x2dx\int 25 x^{2}\, dx = 25 \int x^{2}\, dx

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

    So, the result is: 25x33\frac{25 x^{3}}{3}

  2. Add the constant of integration:

    25x33+constant\frac{25 x^{3}}{3}+ \mathrm{constant}


The answer is:

25x33+constant\frac{25 x^{3}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                    
 |                    3
 |     2          25*x 
 | 25*x  dx = C + -----
 |                  3  
/                      
25x2dx=C+25x33\int 25 x^{2}\, dx = C + \frac{25 x^{3}}{3}
The graph
-1.00-0.75-0.50-0.252.000.000.250.500.751.001.251.501.75200-100
The answer [src]
75
7575
=
=
75
7575
75
Numerical answer [src]
75.0
75.0

    Use the examples entering the upper and lower limits of integration.