Mister Exam

Integral of 15x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 10        
  /        
 |         
 |  15*x dx
 |         
/          
5          
51015xdx\int\limits_{5}^{10} 15 x\, dx
Integral(15*x, (x, 5, 10))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    15xdx=15xdx\int 15 x\, dx = 15 \int x\, dx

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      xdx=x22\int x\, dx = \frac{x^{2}}{2}

    So, the result is: 15x22\frac{15 x^{2}}{2}

  2. Add the constant of integration:

    15x22+constant\frac{15 x^{2}}{2}+ \mathrm{constant}


The answer is:

15x22+constant\frac{15 x^{2}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                  2
 |               15*x 
 | 15*x dx = C + -----
 |                 2  
/                     
15xdx=C+15x22\int 15 x\, dx = C + \frac{15 x^{2}}{2}
The graph
5.05.56.06.57.07.58.08.59.09.510.001000
The answer [src]
1125/2
11252\frac{1125}{2}
=
=
1125/2
11252\frac{1125}{2}
1125/2
Numerical answer [src]
562.5
562.5

    Use the examples entering the upper and lower limits of integration.