Mister Exam

Other calculators

Integral of 15a(tan^3at*sec^3at)*dt dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                              
  /                              
 |                               
 |          3         3          
 |  15*a*tan (a*t)*sec (a*t)*1 dt
 |                               
/                                
0                                
$$\int\limits_{0}^{1} 15 a \tan^{3}{\left(a t \right)} \sec^{3}{\left(a t \right)} 1\, dt$$
Integral(15*a*tan(a*t)^3*sec(a*t)^3*1, (t, 0, 1))
The answer (Indefinite) [src]
                                            //           0             for a = 0\
  /                                         ||                                  |
 |                                          ||     3           5                |
 |         3         3                      ||  sec (a*t)   sec (a*t)           |
 | 15*a*tan (a*t)*sec (a*t)*1 dt = C + 15*a*|<- --------- + ---------           |
 |                                          ||      3           5               |
/                                           ||-----------------------  otherwise|
                                            ||           a                      |
                                            \\                                  /
$$\int 15 a \tan^{3}{\left(a t \right)} \sec^{3}{\left(a t \right)} 1\, dt = C + 15 a \left(\begin{cases} 0 & \text{for}\: a = 0 \\\frac{\frac{\sec^{5}{\left(a t \right)}}{5} - \frac{\sec^{3}{\left(a t \right)}}{3}}{a} & \text{otherwise} \end{cases}\right)$$
The answer [src]
/             2                                     
|    3 - 5*cos (a)                                  
|2 + -------------  for And(a > -oo, a < oo, a != 0)
<          5                                        
|       cos (a)                                     
|                                                   
\        0                     otherwise            
$$\begin{cases} \frac{3 - 5 \cos^{2}{\left(a \right)}}{\cos^{5}{\left(a \right)}} + 2 & \text{for}\: a > -\infty \wedge a < \infty \wedge a \neq 0 \\0 & \text{otherwise} \end{cases}$$
=
=
/             2                                     
|    3 - 5*cos (a)                                  
|2 + -------------  for And(a > -oo, a < oo, a != 0)
<          5                                        
|       cos (a)                                     
|                                                   
\        0                     otherwise            
$$\begin{cases} \frac{3 - 5 \cos^{2}{\left(a \right)}}{\cos^{5}{\left(a \right)}} + 2 & \text{for}\: a > -\infty \wedge a < \infty \wedge a \neq 0 \\0 & \text{otherwise} \end{cases}$$

    Use the examples entering the upper and lower limits of integration.