Mister Exam

Other calculators

0<4*2^x-4^x inequation

A inequation with variable

The solution

You have entered [src]
       x    x
0 < 4*2  - 4 
$$0 < 4 \cdot 2^{x} - 4^{x}$$
0 < 4*2^x - 4^x
Detail solution
Given the inequality:
$$0 < 4 \cdot 2^{x} - 4^{x}$$
To solve this inequality, we must first solve the corresponding equation:
$$0 = 4 \cdot 2^{x} - 4^{x}$$
Solve:
$$x_{1} = 2$$
$$x_{1} = 2$$
This roots
$$x_{1} = 2$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{1}{10} + 2$$
=
$$\frac{19}{10}$$
substitute to the expression
$$0 < 4 \cdot 2^{x} - 4^{x}$$
$$0 < - 4^{\frac{19}{10}} + 4 \cdot 2^{\frac{19}{10}}$$
         4/5      9/10
0 < - 8*2    + 8*2    
    

the solution of our inequality is:
$$x < 2$$
 _____          
      \    
-------ο-------
       x1
Solving inequality on a graph
Rapid solution 2 [src]
(-oo, 2)
$$x\ in\ \left(-\infty, 2\right)$$
x in Interval.open(-oo, 2)
Rapid solution [src]
And(-oo < x, x < 2)
$$-\infty < x \wedge x < 2$$
(-oo < x)∧(x < 2)