Mister Exam

Other calculators

0.5x^2>13 inequation

A inequation with variable

The solution

You have entered [src]
 2     
x      
-- > 13
2      
$$\frac{x^{2}}{2} > 13$$
x^2/2 > 13
Detail solution
Given the inequality:
$$\frac{x^{2}}{2} > 13$$
To solve this inequality, we must first solve the corresponding equation:
$$\frac{x^{2}}{2} = 13$$
Solve:
Move right part of the equation to
left part with negative sign.

The equation is transformed from
$$\frac{x^{2}}{2} = 13$$
to
$$\frac{x^{2}}{2} - 13 = 0$$
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = \frac{1}{2}$$
$$b = 0$$
$$c = -13$$
, then
D = b^2 - 4 * a * c = 

(0)^2 - 4 * (1/2) * (-13) = 26

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = \sqrt{26}$$
$$x_{2} = - \sqrt{26}$$
$$x_{1} = \sqrt{26}$$
$$x_{2} = - \sqrt{26}$$
$$x_{1} = \sqrt{26}$$
$$x_{2} = - \sqrt{26}$$
This roots
$$x_{2} = - \sqrt{26}$$
$$x_{1} = \sqrt{26}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{2}$$
For example, let's take the point
$$x_{0} = x_{2} - \frac{1}{10}$$
=
$$- \sqrt{26} - \frac{1}{10}$$
=
$$- \sqrt{26} - \frac{1}{10}$$
substitute to the expression
$$\frac{x^{2}}{2} > 13$$
$$\frac{\left(- \sqrt{26} - \frac{1}{10}\right)^{2}}{2} > 13$$
               2     
/  1      ____\      
|- -- - \/ 26 |      
\  10         /  > 13
----------------     
       2             
     

one of the solutions of our inequality is:
$$x < - \sqrt{26}$$
 _____           _____          
      \         /
-------ο-------ο-------
       x2      x1

Other solutions will get with the changeover to the next point
etc.
The answer:
$$x < - \sqrt{26}$$
$$x > \sqrt{26}$$
Solving inequality on a graph
Rapid solution [src]
  /   /                ____\     /  ____            \\
Or\And\-oo < x, x < -\/ 26 /, And\\/ 26  < x, x < oo//
$$\left(-\infty < x \wedge x < - \sqrt{26}\right) \vee \left(\sqrt{26} < x \wedge x < \infty\right)$$
((x < oo)∧(sqrt(26) < x))∨((-oo < x)∧(x < -sqrt(26)))
Rapid solution 2 [src]
         ____       ____     
(-oo, -\/ 26 ) U (\/ 26 , oo)
$$x\ in\ \left(-\infty, - \sqrt{26}\right) \cup \left(\sqrt{26}, \infty\right)$$
x in Union(Interval.open(-oo, -sqrt(26)), Interval.open(sqrt(26), oo))