Mister Exam

Other calculators

(z-4)*(2*z+5)<0 inequation

A inequation with variable

The solution

You have entered [src]
(z - 4)*(2*z + 5) < 0
$$\left(z - 4\right) \left(2 z + 5\right) < 0$$
(z - 4)*(2*z + 5) < 0
Detail solution
Given the inequality:
$$\left(z - 4\right) \left(2 z + 5\right) < 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\left(z - 4\right) \left(2 z + 5\right) = 0$$
Solve:
$$x_{1} = -2.5$$
$$x_{2} = 4$$
$$x_{1} = -2.5$$
$$x_{2} = 4$$
This roots
$$x_{1} = -2.5$$
$$x_{2} = 4$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$-2.5 + - \frac{1}{10}$$
=
$$-2.6$$
substitute to the expression
$$\left(z - 4\right) \left(2 z + 5\right) < 0$$
$$\left(z - 4\right) \left(2 z + 5\right) < 0$$
(-4 + z)*(5 + 2*z) < 0

Then
$$x < -2.5$$
no execute
one of the solutions of our inequality is:
$$x > -2.5 \wedge x < 4$$
         _____  
        /     \  
-------ο-------ο-------
       x1      x2
Rapid solution 2 [src]
(-5/2, 4)
$$x\ in\ \left(- \frac{5}{2}, 4\right)$$
x in Interval.open(-5/2, 4)
Rapid solution [src]
And(-5/2 < z, z < 4)
$$- \frac{5}{2} < z \wedge z < 4$$
(-5/2 < z)∧(z < 4)