Mister Exam

x(x-12)>=0 inequation

A inequation with variable

The solution

You have entered [src]
x*(x - 12) >= 0
$$x \left(x - 12\right) \geq 0$$
x*(x - 12) >= 0
Detail solution
Given the inequality:
$$x \left(x - 12\right) \geq 0$$
To solve this inequality, we must first solve the corresponding equation:
$$x \left(x - 12\right) = 0$$
Solve:
Expand the expression in the equation
$$x \left(x - 12\right) = 0$$
We get the quadratic equation
$$x^{2} - 12 x = 0$$
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 1$$
$$b = -12$$
$$c = 0$$
, then
D = b^2 - 4 * a * c = 

(-12)^2 - 4 * (1) * (0) = 144

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = 12$$
$$x_{2} = 0$$
$$x_{1} = 12$$
$$x_{2} = 0$$
$$x_{1} = 12$$
$$x_{2} = 0$$
This roots
$$x_{2} = 0$$
$$x_{1} = 12$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{2}$$
For example, let's take the point
$$x_{0} = x_{2} - \frac{1}{10}$$
=
$$- \frac{1}{10}$$
=
$$- \frac{1}{10}$$
substitute to the expression
$$x \left(x - 12\right) \geq 0$$
$$\frac{\left(-1\right) \left(-12 + - \frac{1}{10}\right)}{10} \geq 0$$
121     
--- >= 0
100     

one of the solutions of our inequality is:
$$x \leq 0$$
 _____           _____          
      \         /
-------•-------•-------
       x2      x1

Other solutions will get with the changeover to the next point
etc.
The answer:
$$x \leq 0$$
$$x \geq 12$$
Solving inequality on a graph
Rapid solution [src]
Or(And(12 <= x, x < oo), And(x <= 0, -oo < x))
$$\left(12 \leq x \wedge x < \infty\right) \vee \left(x \leq 0 \wedge -\infty < x\right)$$
((12 <= x)∧(x < oo))∨((x <= 0)∧(-oo < x))
Rapid solution 2 [src]
(-oo, 0] U [12, oo)
$$x\ in\ \left(-\infty, 0\right] \cup \left[12, \infty\right)$$
x in Union(Interval(-oo, 0), Interval(12, oo))