Mister Exam

Other calculators

x^2+x-12=>0 inequation

A inequation with variable

The solution

You have entered [src]
 2              
x  + x - 12 >= 0
$$\left(x^{2} + x\right) - 12 \geq 0$$
x^2 + x - 12 >= 0
Detail solution
Given the inequality:
$$\left(x^{2} + x\right) - 12 \geq 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\left(x^{2} + x\right) - 12 = 0$$
Solve:
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 1$$
$$b = 1$$
$$c = -12$$
, then
D = b^2 - 4 * a * c = 

(1)^2 - 4 * (1) * (-12) = 49

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = 3$$
$$x_{2} = -4$$
$$x_{1} = 3$$
$$x_{2} = -4$$
$$x_{1} = 3$$
$$x_{2} = -4$$
This roots
$$x_{2} = -4$$
$$x_{1} = 3$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{2}$$
For example, let's take the point
$$x_{0} = x_{2} - \frac{1}{10}$$
=
$$-4 + - \frac{1}{10}$$
=
$$- \frac{41}{10}$$
substitute to the expression
$$\left(x^{2} + x\right) - 12 \geq 0$$
$$-12 + \left(- \frac{41}{10} + \left(- \frac{41}{10}\right)^{2}\right) \geq 0$$
 71     
--- >= 0
100     

one of the solutions of our inequality is:
$$x \leq -4$$
 _____           _____          
      \         /
-------•-------•-------
       x2      x1

Other solutions will get with the changeover to the next point
etc.
The answer:
$$x \leq -4$$
$$x \geq 3$$
Solving inequality on a graph
Rapid solution [src]
Or(And(3 <= x, x < oo), And(x <= -4, -oo < x))
$$\left(3 \leq x \wedge x < \infty\right) \vee \left(x \leq -4 \wedge -\infty < x\right)$$
((3 <= x)∧(x < oo))∨((x <= -4)∧(-oo < x))
Rapid solution 2 [src]
(-oo, -4] U [3, oo)
$$x\ in\ \left(-\infty, -4\right] \cup \left[3, \infty\right)$$
x in Union(Interval(-oo, -4), Interval(3, oo))