Mister Exam

Other calculators

x^2-49 inequation

A inequation with variable

The solution

You have entered [src]
 2         
x  - 49 > 0
$$x^{2} - 49 > 0$$
x^2 - 49 > 0
Detail solution
Given the inequality:
$$x^{2} - 49 > 0$$
To solve this inequality, we must first solve the corresponding equation:
$$x^{2} - 49 = 0$$
Solve:
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 1$$
$$b = 0$$
$$c = -49$$
, then
D = b^2 - 4 * a * c = 

(0)^2 - 4 * (1) * (-49) = 196

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = 7$$
$$x_{2} = -7$$
$$x_{1} = 7$$
$$x_{2} = -7$$
$$x_{1} = 7$$
$$x_{2} = -7$$
This roots
$$x_{2} = -7$$
$$x_{1} = 7$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{2}$$
For example, let's take the point
$$x_{0} = x_{2} - \frac{1}{10}$$
=
$$-7 + - \frac{1}{10}$$
=
$$- \frac{71}{10}$$
substitute to the expression
$$x^{2} - 49 > 0$$
$$-49 + \left(- \frac{71}{10}\right)^{2} > 0$$
141    
--- > 0
100    

one of the solutions of our inequality is:
$$x < -7$$
 _____           _____          
      \         /
-------ο-------ο-------
       x2      x1

Other solutions will get with the changeover to the next point
etc.
The answer:
$$x < -7$$
$$x > 7$$
Rapid solution 2 [src]
(-oo, -7) U (7, oo)
$$x\ in\ \left(-\infty, -7\right) \cup \left(7, \infty\right)$$
x in Union(Interval.open(-oo, -7), Interval.open(7, oo))
Rapid solution [src]
Or(And(-oo < x, x < -7), And(7 < x, x < oo))
$$\left(-\infty < x \wedge x < -7\right) \vee \left(7 < x \wedge x < \infty\right)$$
((-oo < x)∧(x < -7))∨((7 < x)∧(x < oo))