Given the inequality:
$$\left(\left(x^{2} - 8 x\right) - \frac{3}{\left|{x - 4}\right|}\right) + 18 \leq 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\left(\left(x^{2} - 8 x\right) - \frac{3}{\left|{x - 4}\right|}\right) + 18 = 0$$
Solve:
$$x_{1} = 5$$
$$x_{2} = 3$$
$$x_{1} = 5$$
$$x_{2} = 3$$
This roots
$$x_{2} = 3$$
$$x_{1} = 5$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{2}$$
For example, let's take the point
$$x_{0} = x_{2} - \frac{1}{10}$$
=
$$- \frac{1}{10} + 3$$
=
$$2.9$$
substitute to the expression
$$\left(\left(x^{2} - 8 x\right) - \frac{3}{\left|{x - 4}\right|}\right) + 18 \leq 0$$
$$\left(\left(- 2.9 \cdot 8 + 2.9^{2}\right) - \frac{3}{\left|{-4 + 2.9}\right|}\right) + 18 \leq 0$$
0.482727272727274 <= 0
but
0.482727272727274 >= 0
Then
$$x \leq 3$$
no execute
one of the solutions of our inequality is:
$$x \geq 3 \wedge x \leq 5$$
_____
/ \
-------•-------•-------
x2 x1