Mister Exam

Other calculators

x^2-6x-1<0 inequation

A inequation with variable

The solution

You have entered [src]
 2              
x  - 6*x - 1 < 0
$$\left(x^{2} - 6 x\right) - 1 < 0$$
x^2 - 6*x - 1 < 0
Detail solution
Given the inequality:
$$\left(x^{2} - 6 x\right) - 1 < 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\left(x^{2} - 6 x\right) - 1 = 0$$
Solve:
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 1$$
$$b = -6$$
$$c = -1$$
, then
D = b^2 - 4 * a * c = 

(-6)^2 - 4 * (1) * (-1) = 40

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = 3 + \sqrt{10}$$
$$x_{2} = 3 - \sqrt{10}$$
$$x_{1} = 3 + \sqrt{10}$$
$$x_{2} = 3 - \sqrt{10}$$
$$x_{1} = 3 + \sqrt{10}$$
$$x_{2} = 3 - \sqrt{10}$$
This roots
$$x_{2} = 3 - \sqrt{10}$$
$$x_{1} = 3 + \sqrt{10}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{2}$$
For example, let's take the point
$$x_{0} = x_{2} - \frac{1}{10}$$
=
$$\left(3 - \sqrt{10}\right) + - \frac{1}{10}$$
=
$$\frac{29}{10} - \sqrt{10}$$
substitute to the expression
$$\left(x^{2} - 6 x\right) - 1 < 0$$
$$-1 + \left(\left(\frac{29}{10} - \sqrt{10}\right)^{2} - 6 \left(\frac{29}{10} - \sqrt{10}\right)\right) < 0$$
                    2               
  92   /29     ____\        ____    
- -- + |-- - \/ 10 |  + 6*\/ 10  < 0
  5    \10         /                
    

but
                    2               
  92   /29     ____\        ____    
- -- + |-- - \/ 10 |  + 6*\/ 10  > 0
  5    \10         /                
    

Then
$$x < 3 - \sqrt{10}$$
no execute
one of the solutions of our inequality is:
$$x > 3 - \sqrt{10} \wedge x < 3 + \sqrt{10}$$
         _____  
        /     \  
-------ο-------ο-------
       x2      x1
Solving inequality on a graph
Rapid solution [src]
   /          ____        ____    \
And\x < 3 + \/ 10 , 3 - \/ 10  < x/
$$x < 3 + \sqrt{10} \wedge 3 - \sqrt{10} < x$$
(x < 3 + sqrt(10))∧(3 - sqrt(10) < x)
Rapid solution 2 [src]
       ____        ____ 
(3 - \/ 10 , 3 + \/ 10 )
$$x\ in\ \left(3 - \sqrt{10}, 3 + \sqrt{10}\right)$$
x in Interval.open(3 - sqrt(10), 3 + sqrt(10))