Given the inequality:
$$\left(x^{2} + \left(- 4 x^{4} + \left(x^{8} - x^{6}\right)\right)\right) + 1 \geq 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\left(x^{2} + \left(- 4 x^{4} + \left(x^{8} - x^{6}\right)\right)\right) + 1 = 0$$
Solve:
$$x_{1} = - \sqrt{- \frac{1}{2} + \frac{\sqrt{5}}{2}}$$
$$x_{2} = \sqrt{- \frac{1}{2} + \frac{\sqrt{5}}{2}}$$
$$x_{3} = - \sqrt{1 - \sqrt{2}}$$
$$x_{4} = \sqrt{1 - \sqrt{2}}$$
$$x_{5} = - \sqrt{1 + \sqrt{2}}$$
$$x_{6} = \sqrt{1 + \sqrt{2}}$$
$$x_{7} = - \sqrt{- \frac{\sqrt{5}}{2} - \frac{1}{2}}$$
$$x_{8} = \sqrt{- \frac{\sqrt{5}}{2} - \frac{1}{2}}$$
Exclude the complex solutions:
$$x_{1} = - \sqrt{- \frac{1}{2} + \frac{\sqrt{5}}{2}}$$
$$x_{2} = \sqrt{- \frac{1}{2} + \frac{\sqrt{5}}{2}}$$
$$x_{3} = - \sqrt{1 + \sqrt{2}}$$
$$x_{4} = \sqrt{1 + \sqrt{2}}$$
This roots
$$x_{3} = - \sqrt{1 + \sqrt{2}}$$
$$x_{1} = - \sqrt{- \frac{1}{2} + \frac{\sqrt{5}}{2}}$$
$$x_{2} = \sqrt{- \frac{1}{2} + \frac{\sqrt{5}}{2}}$$
$$x_{4} = \sqrt{1 + \sqrt{2}}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{3}$$
For example, let's take the point
$$x_{0} = x_{3} - \frac{1}{10}$$
=
$$- \sqrt{1 + \sqrt{2}} - \frac{1}{10}$$
=
$$- \sqrt{1 + \sqrt{2}} - \frac{1}{10}$$
substitute to the expression
$$\left(x^{2} + \left(- 4 x^{4} + \left(x^{8} - x^{6}\right)\right)\right) + 1 \geq 0$$
$$1 + \left(\left(- \sqrt{1 + \sqrt{2}} - \frac{1}{10}\right)^{2} + \left(- 4 \left(- \sqrt{1 + \sqrt{2}} - \frac{1}{10}\right)^{4} + \left(- \left(- \sqrt{1 + \sqrt{2}} - \frac{1}{10}\right)^{6} + \left(- \sqrt{1 + \sqrt{2}} - \frac{1}{10}\right)^{8}\right)\right)\right) \geq 0$$
2 8 6 4
/ ___________\ / ___________\ / ___________\ / ___________\
| 1 / ___ | | 1 / ___ | | 1 / ___ | | 1 / ___ | >= 0
1 + |- -- - \/ 1 + \/ 2 | + |- -- - \/ 1 + \/ 2 | - |- -- - \/ 1 + \/ 2 | - 4*|- -- - \/ 1 + \/ 2 |
\ 10 / \ 10 / \ 10 / \ 10 / one of the solutions of our inequality is:
$$x \leq - \sqrt{1 + \sqrt{2}}$$
_____ _____ _____
\ / \ /
-------•-------•-------•-------•-------
x3 x1 x2 x4Other solutions will get with the changeover to the next point
etc.
The answer:
$$x \leq - \sqrt{1 + \sqrt{2}}$$
$$x \geq - \sqrt{- \frac{1}{2} + \frac{\sqrt{5}}{2}} \wedge x \leq \sqrt{- \frac{1}{2} + \frac{\sqrt{5}}{2}}$$
$$x \geq \sqrt{1 + \sqrt{2}}$$