Given the inequality:
$$\frac{\left(x - 3\right) \left(x + 2\right) \left(x - 4\right)}{\left(x - 2\right)^{2}} > 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\frac{\left(x - 3\right) \left(x + 2\right) \left(x - 4\right)}{\left(x - 2\right)^{2}} = 0$$
Solve:
$$x_{1} = -2$$
$$x_{2} = 3$$
$$x_{3} = 4$$
$$x_{1} = -2$$
$$x_{2} = 3$$
$$x_{3} = 4$$
This roots
$$x_{1} = -2$$
$$x_{2} = 3$$
$$x_{3} = 4$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$-2 + - \frac{1}{10}$$
=
$$- \frac{21}{10}$$
substitute to the expression
$$\frac{\left(x - 3\right) \left(x + 2\right) \left(x - 4\right)}{\left(x - 2\right)^{2}} > 0$$
$$\frac{\left(-3 + - \frac{21}{10}\right) \left(- \frac{21}{10} + 2\right) \left(-4 + - \frac{21}{10}\right)}{\left(- \frac{21}{10} - 2\right)^{2}} > 0$$
-3111
------ > 0
16810
Then
$$x < -2$$
no execute
one of the solutions of our inequality is:
$$x > -2 \wedge x < 3$$
_____ _____
/ \ /
-------ο-------ο-------ο-------
x1 x2 x3Other solutions will get with the changeover to the next point
etc.
The answer:
$$x > -2 \wedge x < 3$$
$$x > 4$$