Mister Exam

√x+2>2 inequation

A inequation with variable

The solution

You have entered [src]
  ___        
\/ x  + 2 > 2
$$\sqrt{x} + 2 > 2$$
sqrt(x) + 2 > 2
Detail solution
Given the inequality:
$$\sqrt{x} + 2 > 2$$
To solve this inequality, we must first solve the corresponding equation:
$$\sqrt{x} + 2 = 2$$
Solve:
Given the equation
$$\sqrt{x} + 2 = 2$$
so
$$x = 0$$
We get the answer: x = 0
$$x_{1} = 0$$
$$x_{1} = 0$$
This roots
$$x_{1} = 0$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{1}{10}$$
=
$$- \frac{1}{10}$$
substitute to the expression
$$\sqrt{x} + 2 > 2$$
$$2 + \sqrt{- \frac{1}{10}} > 2$$
        ____    
    I*\/ 10     
2 + -------- > 2
       10       
    

Then
$$x < 0$$
no execute
the solution of our inequality is:
$$x > 0$$
         _____  
        /
-------ο-------
       x1
Solving inequality on a graph
Rapid solution 2 [src]
(0, oo)
$$x\ in\ \left(0, \infty\right)$$
x in Interval.open(0, oo)
Rapid solution [src]
And(0 < x, x < oo)
$$0 < x \wedge x < \infty$$
(0 < x)∧(x < oo)