Mister Exam

Other calculators

x*(x-log(0.75)4)/log2(6x^2-11x+4)<=0 inequation

A inequation with variable

The solution

You have entered [src]
  x*(x - log(3/4)*4)       
---------------------- <= 0
/   /   2           \\     
|log\6*x  - 11*x + 4/|     
|--------------------|     
\       log(2)       /     
$$\frac{x \left(x - 4 \log{\left(\frac{3}{4} \right)}\right)}{\frac{1}{\log{\left(2 \right)}} \log{\left(\left(6 x^{2} - 11 x\right) + 4 \right)}} \leq 0$$
(x*(x - 4*log(3/4)))/((log(6*x^2 - 11*x + 4)/log(2))) <= 0
Detail solution
Given the inequality:
$$\frac{x \left(x - 4 \log{\left(\frac{3}{4} \right)}\right)}{\frac{1}{\log{\left(2 \right)}} \log{\left(\left(6 x^{2} - 11 x\right) + 4 \right)}} \leq 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\frac{x \left(x - 4 \log{\left(\frac{3}{4} \right)}\right)}{\frac{1}{\log{\left(2 \right)}} \log{\left(\left(6 x^{2} - 11 x\right) + 4 \right)}} = 0$$
Solve:
$$x_{1} = 0$$
$$x_{2} = \log{\left(\frac{81}{256} \right)}$$
$$x_{1} = 0$$
$$x_{2} = \log{\left(\frac{81}{256} \right)}$$
This roots
$$x_{2} = \log{\left(\frac{81}{256} \right)}$$
$$x_{1} = 0$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{2}$$
For example, let's take the point
$$x_{0} = x_{2} - \frac{1}{10}$$
=
$$\log{\left(\frac{81}{256} \right)} + - \frac{1}{10}$$
=
$$\log{\left(\frac{81}{256} \right)} - \frac{1}{10}$$
substitute to the expression
$$\frac{x \left(x - 4 \log{\left(\frac{3}{4} \right)}\right)}{\frac{1}{\log{\left(2 \right)}} \log{\left(\left(6 x^{2} - 11 x\right) + 4 \right)}} \leq 0$$
$$\frac{\left(\left(\log{\left(\frac{81}{256} \right)} - \frac{1}{10}\right) - 4 \log{\left(\frac{3}{4} \right)}\right) \left(\log{\left(\frac{81}{256} \right)} - \frac{1}{10}\right)}{\frac{1}{\log{\left(2 \right)}} \log{\left(4 + \left(6 \left(\log{\left(\frac{81}{256} \right)} - \frac{1}{10}\right)^{2} - 11 \left(\log{\left(\frac{81}{256} \right)} - \frac{1}{10}\right)\right) \right)}} \leq 0$$
/  1       / 81\\ /  1                    / 81\\            
|- -- + log|---||*|- -- - 4*log(3/4) + log|---||*log(2)     
\  10      \256// \  10                   \256//            
-------------------------------------------------------     
         /                                      2\      <= 0
         |51         / 81\     /  1       / 81\\ |          
      log|-- - 11*log|---| + 6*|- -- + log|---|| |          
         \10         \256/     \  10      \256// /          
     

but
/  1       / 81\\ /  1                    / 81\\            
|- -- + log|---||*|- -- - 4*log(3/4) + log|---||*log(2)     
\  10      \256// \  10                   \256//            
-------------------------------------------------------     
         /                                      2\      >= 0
         |51         / 81\     /  1       / 81\\ |          
      log|-- - 11*log|---| + 6*|- -- + log|---|| |          
         \10         \256/     \  10      \256// /          
     

Then
$$x \leq \log{\left(\frac{81}{256} \right)}$$
no execute
one of the solutions of our inequality is:
$$x \geq \log{\left(\frac{81}{256} \right)} \wedge x \leq 0$$
         _____  
        /     \  
-------•-------•-------
       x2      x1
Solving inequality on a graph