Mister Exam

Other calculators

x-2\(5x-2)^2>0 inequation

A inequation with variable

The solution

You have entered [src]
        2         
x - ---------- > 0
             2    
    (5*x - 2)     
$$x - \frac{2}{\left(5 x - 2\right)^{2}} > 0$$
x - 2/(5*x - 2)^2 > 0
Detail solution
Given the inequality:
$$x - \frac{2}{\left(5 x - 2\right)^{2}} > 0$$
To solve this inequality, we must first solve the corresponding equation:
$$x - \frac{2}{\left(5 x - 2\right)^{2}} = 0$$
Solve:
$$x_{1} = \frac{4}{15} + \left(- \frac{1}{2} - \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{\sqrt{1785}}{1125} + \frac{127}{3375}} + \frac{4}{225 \left(- \frac{1}{2} - \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{\sqrt{1785}}{1125} + \frac{127}{3375}}}$$
$$x_{2} = \frac{4}{15} + \frac{4}{225 \left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{\sqrt{1785}}{1125} + \frac{127}{3375}}} + \left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{\sqrt{1785}}{1125} + \frac{127}{3375}}$$
$$x_{3} = \frac{4}{225 \sqrt[3]{\frac{\sqrt{1785}}{1125} + \frac{127}{3375}}} + \frac{4}{15} + \sqrt[3]{\frac{\sqrt{1785}}{1125} + \frac{127}{3375}}$$
Exclude the complex solutions:
$$x_{1} = \frac{4}{225 \sqrt[3]{\frac{\sqrt{1785}}{1125} + \frac{127}{3375}}} + \frac{4}{15} + \sqrt[3]{\frac{\sqrt{1785}}{1125} + \frac{127}{3375}}$$
This roots
$$x_{1} = \frac{4}{225 \sqrt[3]{\frac{\sqrt{1785}}{1125} + \frac{127}{3375}}} + \frac{4}{15} + \sqrt[3]{\frac{\sqrt{1785}}{1125} + \frac{127}{3375}}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{1}{10} + \left(\frac{4}{225 \sqrt[3]{\frac{\sqrt{1785}}{1125} + \frac{127}{3375}}} + \frac{4}{15} + \sqrt[3]{\frac{\sqrt{1785}}{1125} + \frac{127}{3375}}\right)$$
=
$$\frac{4}{225 \sqrt[3]{\frac{\sqrt{1785}}{1125} + \frac{127}{3375}}} + \frac{1}{6} + \sqrt[3]{\frac{\sqrt{1785}}{1125} + \frac{127}{3375}}$$
substitute to the expression
$$x - \frac{2}{\left(5 x - 2\right)^{2}} > 0$$
$$- \frac{2}{\left(-2 + 5 \left(\frac{4}{225 \sqrt[3]{\frac{\sqrt{1785}}{1125} + \frac{127}{3375}}} + \frac{1}{6} + \sqrt[3]{\frac{\sqrt{1785}}{1125} + \frac{127}{3375}}\right)\right)^{2}} + \left(\frac{4}{225 \sqrt[3]{\frac{\sqrt{1785}}{1125} + \frac{127}{3375}}} + \frac{1}{6} + \sqrt[3]{\frac{\sqrt{1785}}{1125} + \frac{127}{3375}}\right) > 0$$
         _________________                                                                                                 
        /          ______                                                                                                  
1      /  127    \/ 1785                                   2                                             4                 
- + 3 /   ---- + --------  - ------------------------------------------------------------- + --------------------------    
6   \/    3375     1125                                                                  2            _________________    
                             /             _________________                            \            /          ______     
                             |            /          ______                             |           /  127    \/ 1785      
                             |  7        /  127    \/ 1785                 4            |    225*3 /   ---- + --------  > 0
                             |- - + 5*3 /   ---- + --------  + -------------------------|        \/    3375     1125       
                             |  6     \/    3375     1125              _________________|                                  
                             |                                        /          ______ |                                  
                             |                                       /  127    \/ 1785  |                                  
                             |                                 45*3 /   ---- + -------- |                                  
                             \                                    \/    3375     1125   /                                  
    

Then
$$x < \frac{4}{225 \sqrt[3]{\frac{\sqrt{1785}}{1125} + \frac{127}{3375}}} + \frac{4}{15} + \sqrt[3]{\frac{\sqrt{1785}}{1125} + \frac{127}{3375}}$$
no execute
the solution of our inequality is:
$$x > \frac{4}{225 \sqrt[3]{\frac{\sqrt{1785}}{1125} + \frac{127}{3375}}} + \frac{4}{15} + \sqrt[3]{\frac{\sqrt{1785}}{1125} + \frac{127}{3375}}$$
         _____  
        /
-------ο-------
       x1
Solving inequality on a graph
Rapid solution [src]
       /    3       2             \    
CRootOf\25*x  - 20*x  + 4*x - 2, 0/ < x
$$\operatorname{CRootOf} {\left(25 x^{3} - 20 x^{2} + 4 x - 2, 0\right)} < x$$
CRootOf(25*x^3 - 20*x^2 + 4*x - 2, 0) < x
Rapid solution 2 [src]
        /    3       2             \     
(CRootOf\25*x  - 20*x  + 4*x - 2, 0/, oo)
$$x\ in\ \left(\operatorname{CRootOf} {\left(25 x^{3} - 20 x^{2} + 4 x - 2, 0\right)}, \infty\right)$$
x in Interval.open(CRootOf(25*x^3 - 20*x^2 + 4*x - 2, 0), oo)