Mister Exam

Other calculators

x-5/(2x-1)^2>0 inequation

A inequation with variable

The solution

You have entered [src]
        5         
x - ---------- > 0
             2    
    (2*x - 1)     
$$x - \frac{5}{\left(2 x - 1\right)^{2}} > 0$$
x - 5/(2*x - 1)^2 > 0
Detail solution
Given the inequality:
$$x - \frac{5}{\left(2 x - 1\right)^{2}} > 0$$
To solve this inequality, we must first solve the corresponding equation:
$$x - \frac{5}{\left(2 x - 1\right)^{2}} = 0$$
Solve:
$$x_{1} = \frac{1}{3} + \left(- \frac{1}{2} - \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{\sqrt{1995}}{72} + \frac{67}{108}} + \frac{1}{36 \left(- \frac{1}{2} - \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{\sqrt{1995}}{72} + \frac{67}{108}}}$$
$$x_{2} = \frac{1}{3} + \frac{1}{36 \left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{\sqrt{1995}}{72} + \frac{67}{108}}} + \left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{\sqrt{1995}}{72} + \frac{67}{108}}$$
$$x_{3} = \frac{1}{36 \sqrt[3]{\frac{\sqrt{1995}}{72} + \frac{67}{108}}} + \frac{1}{3} + \sqrt[3]{\frac{\sqrt{1995}}{72} + \frac{67}{108}}$$
Exclude the complex solutions:
$$x_{1} = \frac{1}{36 \sqrt[3]{\frac{\sqrt{1995}}{72} + \frac{67}{108}}} + \frac{1}{3} + \sqrt[3]{\frac{\sqrt{1995}}{72} + \frac{67}{108}}$$
This roots
$$x_{1} = \frac{1}{36 \sqrt[3]{\frac{\sqrt{1995}}{72} + \frac{67}{108}}} + \frac{1}{3} + \sqrt[3]{\frac{\sqrt{1995}}{72} + \frac{67}{108}}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{1}{10} + \left(\frac{1}{36 \sqrt[3]{\frac{\sqrt{1995}}{72} + \frac{67}{108}}} + \frac{1}{3} + \sqrt[3]{\frac{\sqrt{1995}}{72} + \frac{67}{108}}\right)$$
=
$$\frac{1}{36 \sqrt[3]{\frac{\sqrt{1995}}{72} + \frac{67}{108}}} + \frac{7}{30} + \sqrt[3]{\frac{\sqrt{1995}}{72} + \frac{67}{108}}$$
substitute to the expression
$$x - \frac{5}{\left(2 x - 1\right)^{2}} > 0$$
$$- \frac{5}{\left(-1 + 2 \left(\frac{1}{36 \sqrt[3]{\frac{\sqrt{1995}}{72} + \frac{67}{108}}} + \frac{7}{30} + \sqrt[3]{\frac{\sqrt{1995}}{72} + \frac{67}{108}}\right)\right)^{2}} + \left(\frac{1}{36 \sqrt[3]{\frac{\sqrt{1995}}{72} + \frac{67}{108}}} + \frac{7}{30} + \sqrt[3]{\frac{\sqrt{1995}}{72} + \frac{67}{108}}\right) > 0$$
          ________________                                                                                              
         /         ______                                                                                               
7       /   67   \/ 1995                                  5                                            1                
-- + 3 /   --- + --------  - ------------------------------------------------------------ + ------------------------    
30   \/    108      72                                                                  2           ________________    
                             /              ________________                           \           /         ______     
                             |             /         ______                            |          /   67   \/ 1995      
                             |  8         /   67   \/ 1995                1            |    36*3 /   --- + --------  > 0
                             |- -- + 2*3 /   --- + --------  + ------------------------|       \/    108      72        
                             |  15     \/    108      72               ________________|                                
                             |                                        /         ______ |                                
                             |                                       /   67   \/ 1995  |                                
                             |                                 18*3 /   --- + -------- |                                
                             \                                    \/    108      72    /                                
    

Then
$$x < \frac{1}{36 \sqrt[3]{\frac{\sqrt{1995}}{72} + \frac{67}{108}}} + \frac{1}{3} + \sqrt[3]{\frac{\sqrt{1995}}{72} + \frac{67}{108}}$$
no execute
the solution of our inequality is:
$$x > \frac{1}{36 \sqrt[3]{\frac{\sqrt{1995}}{72} + \frac{67}{108}}} + \frac{1}{3} + \sqrt[3]{\frac{\sqrt{1995}}{72} + \frac{67}{108}}$$
         _____  
        /
-------ο-------
       x1
Solving inequality on a graph
Rapid solution [src]
       /   3      2           \    
CRootOf\4*x  - 4*x  + x - 5, 0/ < x
$$\operatorname{CRootOf} {\left(4 x^{3} - 4 x^{2} + x - 5, 0\right)} < x$$
CRootOf(4*x^3 - 4*x^2 + x - 5, 0) < x
Rapid solution 2 [src]
        /   3      2           \     
(CRootOf\4*x  - 4*x  + x - 5, 0/, oo)
$$x\ in\ \left(\operatorname{CRootOf} {\left(4 x^{3} - 4 x^{2} + x - 5, 0\right)}, \infty\right)$$
x in Interval.open(CRootOf(4*x^3 - 4*x^2 + x - 5, 0), oo)