Mister Exam

thex<√3/3 inequation

A inequation with variable

The solution

You have entered [src]
             ___
    / x\   \/ 3 
tanh\E / < -----
             3  
$$\tanh{\left(e^{x} \right)} < \frac{\sqrt{3}}{3}$$
tanh(E^x) < sqrt(3)/3
Detail solution
Given the inequality:
$$\tanh{\left(e^{x} \right)} < \frac{\sqrt{3}}{3}$$
To solve this inequality, we must first solve the corresponding equation:
$$\tanh{\left(e^{x} \right)} = \frac{\sqrt{3}}{3}$$
Solve:
$$x_{1} = \log{\left(\log{\left(\sqrt{- \frac{1}{-3 + \sqrt{3}}} \sqrt{\sqrt{3} + 3} \right)} + i \pi \right)}$$
$$x_{2} = \log{\left(\log{\left(\sqrt{- \frac{1}{-3 + \sqrt{3}}} \sqrt{\sqrt{3} + 3} \right)} \right)}$$
Exclude the complex solutions:
$$x_{1} = \log{\left(\log{\left(\sqrt{- \frac{1}{-3 + \sqrt{3}}} \sqrt{\sqrt{3} + 3} \right)} \right)}$$
This roots
$$x_{1} = \log{\left(\log{\left(\sqrt{- \frac{1}{-3 + \sqrt{3}}} \sqrt{\sqrt{3} + 3} \right)} \right)}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\log{\left(\log{\left(\sqrt{- \frac{1}{-3 + \sqrt{3}}} \sqrt{\sqrt{3} + 3} \right)} \right)} + - \frac{1}{10}$$
=
$$\log{\left(\log{\left(\sqrt{- \frac{1}{-3 + \sqrt{3}}} \sqrt{\sqrt{3} + 3} \right)} \right)} - \frac{1}{10}$$
substitute to the expression
$$\tanh{\left(e^{x} \right)} < \frac{\sqrt{3}}{3}$$
$$\tanh{\left(e^{\log{\left(\log{\left(\sqrt{- \frac{1}{-3 + \sqrt{3}}} \sqrt{\sqrt{3} + 3} \right)} \right)} - \frac{1}{10}} \right)} < \frac{\sqrt{3}}{3}$$
    /          /     ____________    ___________\\     ___
    | -1/10    |    /    -1         /       ___ ||   \/ 3 
tanh|e     *log|   /  ---------- *\/  3 + \/ 3  || < -----
    |          |  /          ___                ||     3  
    \          \\/    -3 + \/ 3                 //   

the solution of our inequality is:
$$x < \log{\left(\log{\left(\sqrt{- \frac{1}{-3 + \sqrt{3}}} \sqrt{\sqrt{3} + 3} \right)} \right)}$$
 _____          
      \    
-------ο-------
       x1
Solving inequality on a graph