Given the inequality:
$$x \geq \frac{37}{2}$$
To solve this inequality, we must first solve the corresponding equation:
$$x = \frac{37}{2}$$
Solve:
Given the linear equation:
x = (37/2)
Expand brackets in the right part
x = 37/2
$$x_{1} = \frac{37}{2}$$
$$x_{1} = \frac{37}{2}$$
This roots
$$x_{1} = \frac{37}{2}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{1}{10} + \frac{37}{2}$$
=
$$\frac{92}{5}$$
substitute to the expression
$$x \geq \frac{37}{2}$$
$$\frac{92}{5} \geq \frac{37}{2}$$
92/5 >= 37/2
but
92/5 < 37/2
Then
$$x \leq \frac{37}{2}$$
no execute
the solution of our inequality is:
$$x \geq \frac{37}{2}$$
_____
/
-------•-------
x1