Given the inequality:
$$\left(- 4 x + \frac{x^{2} \left(1 - x\right)}{x^{2}}\right) + 4 \leq 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\left(- 4 x + \frac{x^{2} \left(1 - x\right)}{x^{2}}\right) + 4 = 0$$
Solve:
$$x_{1} = 1$$
$$x_{1} = 1$$
This roots
$$x_{1} = 1$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{1}{10} + 1$$
=
$$\frac{9}{10}$$
substitute to the expression
$$\left(- 4 x + \frac{x^{2} \left(1 - x\right)}{x^{2}}\right) + 4 \leq 0$$
$$\left(- \frac{4 \cdot 9}{10} + \frac{\left(\frac{9}{10}\right)^{2} \left(1 - \frac{9}{10}\right)}{\left(\frac{9}{10}\right)^{2}}\right) + 4 \leq 0$$
1/2 <= 0
but
1/2 >= 0
Then
$$x \leq 1$$
no execute
the solution of our inequality is:
$$x \geq 1$$
_____
/
-------•-------
x1