Given the inequality:
$$- 2 \left(z + 5\right) \leq 200$$
To solve this inequality, we must first solve the corresponding equation:
$$- 2 \left(z + 5\right) = 200$$
Solve:
$$x_{1} = -105$$
$$x_{1} = -105$$
This roots
$$x_{1} = -105$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$-105 + - \frac{1}{10}$$
=
$$-105.1$$
substitute to the expression
$$- 2 \left(z + 5\right) \leq 200$$
$$- 2 \left(z + 5\right) \leq 200$$
-10 - 2*z <= 200
Then
$$x \leq -105$$
no execute
the solution of our inequality is:
$$x \geq -105$$
_____
/
-------•-------
x1