Mister Exam

Other calculators

−2(z+5)≤200 inequation

A inequation with variable

The solution

You have entered [src]
-2*(z + 5) <= 200
$$- 2 \left(z + 5\right) \leq 200$$
-2*(z + 5) <= 200
Detail solution
Given the inequality:
$$- 2 \left(z + 5\right) \leq 200$$
To solve this inequality, we must first solve the corresponding equation:
$$- 2 \left(z + 5\right) = 200$$
Solve:
$$x_{1} = -105$$
$$x_{1} = -105$$
This roots
$$x_{1} = -105$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$-105 + - \frac{1}{10}$$
=
$$-105.1$$
substitute to the expression
$$- 2 \left(z + 5\right) \leq 200$$
$$- 2 \left(z + 5\right) \leq 200$$
-10 - 2*z <= 200

Then
$$x \leq -105$$
no execute
the solution of our inequality is:
$$x \geq -105$$
         _____  
        /
-------•-------
       x1
Rapid solution 2 [src]
[-105, oo)
$$x\ in\ \left[-105, \infty\right)$$
x in Interval(-105, oo)
Rapid solution [src]
And(-105 <= z, z < oo)
$$-105 \leq z \wedge z < \infty$$
(-105 <= z)∧(z < oo)