Mister Exam

Other calculators

2x^2-9x-4<0 inequation

A inequation with variable

The solution

You have entered [src]
   2              
2*x  - 9*x - 4 < 0
$$\left(2 x^{2} - 9 x\right) - 4 < 0$$
2*x^2 - 9*x - 4 < 0
Detail solution
Given the inequality:
$$\left(2 x^{2} - 9 x\right) - 4 < 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\left(2 x^{2} - 9 x\right) - 4 = 0$$
Solve:
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 2$$
$$b = -9$$
$$c = -4$$
, then
D = b^2 - 4 * a * c = 

(-9)^2 - 4 * (2) * (-4) = 113

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = \frac{9}{4} + \frac{\sqrt{113}}{4}$$
$$x_{2} = \frac{9}{4} - \frac{\sqrt{113}}{4}$$
$$x_{1} = \frac{9}{4} + \frac{\sqrt{113}}{4}$$
$$x_{2} = \frac{9}{4} - \frac{\sqrt{113}}{4}$$
$$x_{1} = \frac{9}{4} + \frac{\sqrt{113}}{4}$$
$$x_{2} = \frac{9}{4} - \frac{\sqrt{113}}{4}$$
This roots
$$x_{2} = \frac{9}{4} - \frac{\sqrt{113}}{4}$$
$$x_{1} = \frac{9}{4} + \frac{\sqrt{113}}{4}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{2}$$
For example, let's take the point
$$x_{0} = x_{2} - \frac{1}{10}$$
=
$$\left(\frac{9}{4} - \frac{\sqrt{113}}{4}\right) + - \frac{1}{10}$$
=
$$\frac{43}{20} - \frac{\sqrt{113}}{4}$$
substitute to the expression
$$\left(2 x^{2} - 9 x\right) - 4 < 0$$
$$-4 + \left(2 \left(\frac{43}{20} - \frac{\sqrt{113}}{4}\right)^{2} - 9 \left(\frac{43}{20} - \frac{\sqrt{113}}{4}\right)\right) < 0$$
                        2                
          /       _____\        _____    
  467     |43   \/ 113 |    9*\/ 113  < 0
- --- + 2*|-- - -------|  + ---------    
   20     \20      4   /        4        

but
                        2                
          /       _____\        _____    
  467     |43   \/ 113 |    9*\/ 113  > 0
- --- + 2*|-- - -------|  + ---------    
   20     \20      4   /        4        

Then
$$x < \frac{9}{4} - \frac{\sqrt{113}}{4}$$
no execute
one of the solutions of our inequality is:
$$x > \frac{9}{4} - \frac{\sqrt{113}}{4} \wedge x < \frac{9}{4} + \frac{\sqrt{113}}{4}$$
         _____  
        /     \  
-------ο-------ο-------
       x2      x1
Solving inequality on a graph
Rapid solution [src]
   /          _____        _____    \
   |    9   \/ 113   9   \/ 113     |
And|x < - + -------, - - ------- < x|
   \    4      4     4      4       /
$$x < \frac{9}{4} + \frac{\sqrt{113}}{4} \wedge \frac{9}{4} - \frac{\sqrt{113}}{4} < x$$
(x < 9/4 + sqrt(113)/4)∧(9/4 - sqrt(113)/4 < x)
Rapid solution 2 [src]
       _____        _____ 
 9   \/ 113   9   \/ 113  
(- - -------, - + -------)
 4      4     4      4    
$$x\ in\ \left(\frac{9}{4} - \frac{\sqrt{113}}{4}, \frac{9}{4} + \frac{\sqrt{113}}{4}\right)$$
x in Interval.open(9/4 - sqrt(113)/4, 9/4 + sqrt(113)/4)