Mister Exam

Other calculators

(2x^2-11x+5)/(log13(x+3))<=0 inequation

A inequation with variable

The solution

You have entered [src]
   2                
2*x  - 11*x + 5     
--------------- <= 0
  /log(x + 3)\      
  |----------|      
  \ log(13)  /      
$$\frac{\left(2 x^{2} - 11 x\right) + 5}{\frac{1}{\log{\left(13 \right)}} \log{\left(x + 3 \right)}} \leq 0$$
(2*x^2 - 11*x + 5)/((log(x + 3)/log(13))) <= 0
Detail solution
Given the inequality:
$$\frac{\left(2 x^{2} - 11 x\right) + 5}{\frac{1}{\log{\left(13 \right)}} \log{\left(x + 3 \right)}} \leq 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\frac{\left(2 x^{2} - 11 x\right) + 5}{\frac{1}{\log{\left(13 \right)}} \log{\left(x + 3 \right)}} = 0$$
Solve:
$$x_{1} = \frac{1}{2}$$
$$x_{2} = 5$$
$$x_{1} = \frac{1}{2}$$
$$x_{2} = 5$$
This roots
$$x_{1} = \frac{1}{2}$$
$$x_{2} = 5$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{1}{10} + \frac{1}{2}$$
=
$$\frac{2}{5}$$
substitute to the expression
$$\frac{\left(2 x^{2} - 11 x\right) + 5}{\frac{1}{\log{\left(13 \right)}} \log{\left(x + 3 \right)}} \leq 0$$
$$\frac{\left(- \frac{2 \cdot 11}{5} + 2 \left(\frac{2}{5}\right)^{2}\right) + 5}{\frac{1}{\log{\left(13 \right)}} \log{\left(\frac{2}{5} + 3 \right)}} \leq 0$$
 23*log(13)      
------------ <= 0
25*log(17/5)     

but
 23*log(13)      
------------ >= 0
25*log(17/5)     

Then
$$x \leq \frac{1}{2}$$
no execute
one of the solutions of our inequality is:
$$x \geq \frac{1}{2} \wedge x \leq 5$$
         _____  
        /     \  
-------•-------•-------
       x1      x2
Rapid solution [src]
Or(And(-3 <= x, x < -2), And(1/2 <= x, x <= 5))
$$\left(-3 \leq x \wedge x < -2\right) \vee \left(\frac{1}{2} \leq x \wedge x \leq 5\right)$$
((-3 <= x)∧(x < -2))∨((1/2 <= x)∧(x <= 5))
Rapid solution 2 [src]
[-3, -2) U [1/2, 5]
$$x\ in\ \left[-3, -2\right) \cup \left[\frac{1}{2}, 5\right]$$
x in Union(Interval.Ropen(-3, -2), Interval(1/2, 5))