Given the inequality:
$$\frac{\left(2 x^{2} - 11 x\right) + 5}{\frac{1}{\log{\left(13 \right)}} \log{\left(x + 3 \right)}} \leq 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\frac{\left(2 x^{2} - 11 x\right) + 5}{\frac{1}{\log{\left(13 \right)}} \log{\left(x + 3 \right)}} = 0$$
Solve:
$$x_{1} = \frac{1}{2}$$
$$x_{2} = 5$$
$$x_{1} = \frac{1}{2}$$
$$x_{2} = 5$$
This roots
$$x_{1} = \frac{1}{2}$$
$$x_{2} = 5$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{1}{10} + \frac{1}{2}$$
=
$$\frac{2}{5}$$
substitute to the expression
$$\frac{\left(2 x^{2} - 11 x\right) + 5}{\frac{1}{\log{\left(13 \right)}} \log{\left(x + 3 \right)}} \leq 0$$
$$\frac{\left(- \frac{2 \cdot 11}{5} + 2 \left(\frac{2}{5}\right)^{2}\right) + 5}{\frac{1}{\log{\left(13 \right)}} \log{\left(\frac{2}{5} + 3 \right)}} \leq 0$$
23*log(13)
------------ <= 0
25*log(17/5)
but
23*log(13)
------------ >= 0
25*log(17/5)
Then
$$x \leq \frac{1}{2}$$
no execute
one of the solutions of our inequality is:
$$x \geq \frac{1}{2} \wedge x \leq 5$$
_____
/ \
-------•-------•-------
x1 x2