Mister Exam

Other calculators

2^(2-x^2)≥3 inequation

A inequation with variable

The solution

You have entered [src]
      2     
 2 - x      
2       >= 3
$$2^{2 - x^{2}} \geq 3$$
2^(2 - x^2) >= 3
Detail solution
Given the inequality:
$$2^{2 - x^{2}} \geq 3$$
To solve this inequality, we must first solve the corresponding equation:
$$2^{2 - x^{2}} = 3$$
Solve:
$$x_{1} = - \frac{\sqrt{\log{\left(\frac{4}{3} \right)}}}{\sqrt{\log{\left(2 \right)}}}$$
$$x_{2} = \frac{\sqrt{\log{\left(\frac{4}{3} \right)}}}{\sqrt{\log{\left(2 \right)}}}$$
$$x_{1} = - \frac{\sqrt{\log{\left(\frac{4}{3} \right)}}}{\sqrt{\log{\left(2 \right)}}}$$
$$x_{2} = \frac{\sqrt{\log{\left(\frac{4}{3} \right)}}}{\sqrt{\log{\left(2 \right)}}}$$
This roots
$$x_{1} = - \frac{\sqrt{\log{\left(\frac{4}{3} \right)}}}{\sqrt{\log{\left(2 \right)}}}$$
$$x_{2} = \frac{\sqrt{\log{\left(\frac{4}{3} \right)}}}{\sqrt{\log{\left(2 \right)}}}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{\sqrt{\log{\left(\frac{4}{3} \right)}}}{\sqrt{\log{\left(2 \right)}}} + - \frac{1}{10}$$
=
$$- \frac{\sqrt{\log{\left(\frac{4}{3} \right)}}}{\sqrt{\log{\left(2 \right)}}} - \frac{1}{10}$$
substitute to the expression
$$2^{2 - x^{2}} \geq 3$$
$$2^{2 - \left(- \frac{\sqrt{\log{\left(\frac{4}{3} \right)}}}{\sqrt{\log{\left(2 \right)}}} - \frac{1}{10}\right)^{2}} \geq 3$$
                          2     
     /         __________\      
     |  1    \/ log(4/3) |      
 2 - |- -- - ------------|  >= 3
     |  10      ________ |      
     \        \/ log(2)  /      
2                               

but
                          2    
     /         __________\     
     |  1    \/ log(4/3) |     
 2 - |- -- - ------------|  < 3
     |  10      ________ |     
     \        \/ log(2)  /     
2                              

Then
$$x \leq - \frac{\sqrt{\log{\left(\frac{4}{3} \right)}}}{\sqrt{\log{\left(2 \right)}}}$$
no execute
one of the solutions of our inequality is:
$$x \geq - \frac{\sqrt{\log{\left(\frac{4}{3} \right)}}}{\sqrt{\log{\left(2 \right)}}} \wedge x \leq \frac{\sqrt{\log{\left(\frac{4}{3} \right)}}}{\sqrt{\log{\left(2 \right)}}}$$
         _____  
        /     \  
-------•-------•-------
       x1      x2
Solving inequality on a graph
Rapid solution 2 [src]
      ____________      ____________ 
     /     log(3)      /     log(3)  
[-  /  2 - ------ ,   /  2 - ------ ]
  \/       log(2)   \/       log(2)  
$$x\ in\ \left[- \sqrt{- \frac{\log{\left(3 \right)}}{\log{\left(2 \right)}} + 2}, \sqrt{- \frac{\log{\left(3 \right)}}{\log{\left(2 \right)}} + 2}\right]$$
x in Interval(-sqrt(-log(3)/log(2) + 2), sqrt(-log(3)/log(2) + 2))
Rapid solution [src]
   /         ____________       ____________     \
   |        /     log(3)       /     log(3)      |
And|x <=   /  2 - ------ , -  /  2 - ------  <= x|
   \     \/       log(2)    \/       log(2)      /
$$x \leq \sqrt{- \frac{\log{\left(3 \right)}}{\log{\left(2 \right)}} + 2} \wedge - \sqrt{- \frac{\log{\left(3 \right)}}{\log{\left(2 \right)}} + 2} \leq x$$
(x <= sqrt(2 - log(3)/log(2)))∧(-sqrt(2 - log(3)/log(2)) <= x)