Given the inequality:
$$2^{2 - x^{2}} \geq 3$$
To solve this inequality, we must first solve the corresponding equation:
$$2^{2 - x^{2}} = 3$$
Solve:
$$x_{1} = - \frac{\sqrt{\log{\left(\frac{4}{3} \right)}}}{\sqrt{\log{\left(2 \right)}}}$$
$$x_{2} = \frac{\sqrt{\log{\left(\frac{4}{3} \right)}}}{\sqrt{\log{\left(2 \right)}}}$$
$$x_{1} = - \frac{\sqrt{\log{\left(\frac{4}{3} \right)}}}{\sqrt{\log{\left(2 \right)}}}$$
$$x_{2} = \frac{\sqrt{\log{\left(\frac{4}{3} \right)}}}{\sqrt{\log{\left(2 \right)}}}$$
This roots
$$x_{1} = - \frac{\sqrt{\log{\left(\frac{4}{3} \right)}}}{\sqrt{\log{\left(2 \right)}}}$$
$$x_{2} = \frac{\sqrt{\log{\left(\frac{4}{3} \right)}}}{\sqrt{\log{\left(2 \right)}}}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{\sqrt{\log{\left(\frac{4}{3} \right)}}}{\sqrt{\log{\left(2 \right)}}} + - \frac{1}{10}$$
=
$$- \frac{\sqrt{\log{\left(\frac{4}{3} \right)}}}{\sqrt{\log{\left(2 \right)}}} - \frac{1}{10}$$
substitute to the expression
$$2^{2 - x^{2}} \geq 3$$
$$2^{2 - \left(- \frac{\sqrt{\log{\left(\frac{4}{3} \right)}}}{\sqrt{\log{\left(2 \right)}}} - \frac{1}{10}\right)^{2}} \geq 3$$
2
/ __________\
| 1 \/ log(4/3) |
2 - |- -- - ------------| >= 3
| 10 ________ |
\ \/ log(2) /
2 but
2
/ __________\
| 1 \/ log(4/3) |
2 - |- -- - ------------| < 3
| 10 ________ |
\ \/ log(2) /
2 Then
$$x \leq - \frac{\sqrt{\log{\left(\frac{4}{3} \right)}}}{\sqrt{\log{\left(2 \right)}}}$$
no execute
one of the solutions of our inequality is:
$$x \geq - \frac{\sqrt{\log{\left(\frac{4}{3} \right)}}}{\sqrt{\log{\left(2 \right)}}} \wedge x \leq \frac{\sqrt{\log{\left(\frac{4}{3} \right)}}}{\sqrt{\log{\left(2 \right)}}}$$
_____
/ \
-------•-------•-------
x1 x2