Mister Exam

Other calculators

2+5*sin(5*x)>=0 inequation

A inequation with variable

The solution

You have entered [src]
2 + 5*sin(5*x) >= 0
$$5 \sin{\left(5 x \right)} + 2 \geq 0$$
5*sin(5*x) + 2 >= 0
Detail solution
Given the inequality:
$$5 \sin{\left(5 x \right)} + 2 \geq 0$$
To solve this inequality, we must first solve the corresponding equation:
$$5 \sin{\left(5 x \right)} + 2 = 0$$
Solve:
Given the equation
$$5 \sin{\left(5 x \right)} + 2 = 0$$
- this is the simplest trigonometric equation
Move 2 to right part of the equation

with the change of sign in 2

We get:
$$5 \sin{\left(5 x \right)} = -2$$
Divide both parts of the equation by 5

The equation is transformed to
$$\sin{\left(5 x \right)} = - \frac{2}{5}$$
This equation is transformed to
$$5 x = 2 \pi n + \operatorname{asin}{\left(- \frac{2}{5} \right)}$$
$$5 x = 2 \pi n - \operatorname{asin}{\left(- \frac{2}{5} \right)} + \pi$$
Or
$$5 x = 2 \pi n - \operatorname{asin}{\left(\frac{2}{5} \right)}$$
$$5 x = 2 \pi n + \operatorname{asin}{\left(\frac{2}{5} \right)} + \pi$$
, where n - is a integer
Divide both parts of the equation by
$$5$$
$$x_{1} = \frac{2 \pi n}{5} - \frac{\operatorname{asin}{\left(\frac{2}{5} \right)}}{5}$$
$$x_{2} = \frac{2 \pi n}{5} + \frac{\operatorname{asin}{\left(\frac{2}{5} \right)}}{5} + \frac{\pi}{5}$$
$$x_{1} = \frac{2 \pi n}{5} - \frac{\operatorname{asin}{\left(\frac{2}{5} \right)}}{5}$$
$$x_{2} = \frac{2 \pi n}{5} + \frac{\operatorname{asin}{\left(\frac{2}{5} \right)}}{5} + \frac{\pi}{5}$$
This roots
$$x_{1} = \frac{2 \pi n}{5} - \frac{\operatorname{asin}{\left(\frac{2}{5} \right)}}{5}$$
$$x_{2} = \frac{2 \pi n}{5} + \frac{\operatorname{asin}{\left(\frac{2}{5} \right)}}{5} + \frac{\pi}{5}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(\frac{2 \pi n}{5} - \frac{\operatorname{asin}{\left(\frac{2}{5} \right)}}{5}\right) + - \frac{1}{10}$$
=
$$\frac{2 \pi n}{5} - \frac{1}{10} - \frac{\operatorname{asin}{\left(\frac{2}{5} \right)}}{5}$$
substitute to the expression
$$5 \sin{\left(5 x \right)} + 2 \geq 0$$
$$5 \sin{\left(5 \left(\frac{2 \pi n}{5} - \frac{1}{10} - \frac{\operatorname{asin}{\left(\frac{2}{5} \right)}}{5}\right) \right)} + 2 \geq 0$$
2 - 5*sin(1/2 - 2*pi*n + asin(2/5)) >= 0

but
2 - 5*sin(1/2 - 2*pi*n + asin(2/5)) < 0

Then
$$x \leq \frac{2 \pi n}{5} - \frac{\operatorname{asin}{\left(\frac{2}{5} \right)}}{5}$$
no execute
one of the solutions of our inequality is:
$$x \geq \frac{2 \pi n}{5} - \frac{\operatorname{asin}{\left(\frac{2}{5} \right)}}{5} \wedge x \leq \frac{2 \pi n}{5} + \frac{\operatorname{asin}{\left(\frac{2}{5} \right)}}{5} + \frac{\pi}{5}$$
         _____  
        /     \  
-------•-------•-------
       x1      x2
Solving inequality on a graph
Rapid solution 2 [src]
            /      ____\                    /      ____\              
            |5   \/ 21 |                    |5   \/ 21 |              
      2*atan|- + ------|              2*atan|- - ------|              
            \2     2   /   2*pi             \2     2   /   2*pi  2*pi 
[0, - ------------------ + ----] U [- ------------------ + ----, ----]
              5             5                 5             5     5   
$$x\ in\ \left[0, - \frac{2 \operatorname{atan}{\left(\frac{\sqrt{21}}{2} + \frac{5}{2} \right)}}{5} + \frac{2 \pi}{5}\right] \cup \left[- \frac{2 \operatorname{atan}{\left(\frac{5}{2} - \frac{\sqrt{21}}{2} \right)}}{5} + \frac{2 \pi}{5}, \frac{2 \pi}{5}\right]$$
x in Union(Interval(0, -2*atan(sqrt(21)/2 + 5/2)/5 + 2*pi/5), Interval(-2*atan(5/2 - sqrt(21)/2)/5 + 2*pi/5, 2*pi/5))
Rapid solution [src]
  /   /                     /      ____\       \     /                   /      ____\            \\
  |   |                     |5   \/ 21 |       |     |                   |5   \/ 21 |            ||
  |   |               2*atan|- + ------|       |     |             2*atan|- - ------|            ||
  |   |                     \2     2   /   2*pi|     |     2*pi          \2     2   /   2*pi     ||
Or|And|0 <= x, x <= - ------------------ + ----|, And|x <= ----, - ------------------ + ---- <= x||
  \   \                       5             5  /     \      5              5             5       //
$$\left(0 \leq x \wedge x \leq - \frac{2 \operatorname{atan}{\left(\frac{\sqrt{21}}{2} + \frac{5}{2} \right)}}{5} + \frac{2 \pi}{5}\right) \vee \left(x \leq \frac{2 \pi}{5} \wedge - \frac{2 \operatorname{atan}{\left(\frac{5}{2} - \frac{\sqrt{21}}{2} \right)}}{5} + \frac{2 \pi}{5} \leq x\right)$$
((0 <= x)∧(x <= -2*atan(5/2 + sqrt(21)/2)/5 + 2*pi/5))∨((x <= 2*pi/5)∧(-2*atan(5/2 - sqrt(21)/2)/5 + 2*pi/5 <= x))