Given the inequality:
$$5 \sin{\left(5 x \right)} + 2 \geq 0$$
To solve this inequality, we must first solve the corresponding equation:
$$5 \sin{\left(5 x \right)} + 2 = 0$$
Solve:
Given the equation
$$5 \sin{\left(5 x \right)} + 2 = 0$$
- this is the simplest trigonometric equation
Move 2 to right part of the equation
with the change of sign in 2
We get:
$$5 \sin{\left(5 x \right)} = -2$$
Divide both parts of the equation by 5
The equation is transformed to
$$\sin{\left(5 x \right)} = - \frac{2}{5}$$
This equation is transformed to
$$5 x = 2 \pi n + \operatorname{asin}{\left(- \frac{2}{5} \right)}$$
$$5 x = 2 \pi n - \operatorname{asin}{\left(- \frac{2}{5} \right)} + \pi$$
Or
$$5 x = 2 \pi n - \operatorname{asin}{\left(\frac{2}{5} \right)}$$
$$5 x = 2 \pi n + \operatorname{asin}{\left(\frac{2}{5} \right)} + \pi$$
, where n - is a integer
Divide both parts of the equation by
$$5$$
$$x_{1} = \frac{2 \pi n}{5} - \frac{\operatorname{asin}{\left(\frac{2}{5} \right)}}{5}$$
$$x_{2} = \frac{2 \pi n}{5} + \frac{\operatorname{asin}{\left(\frac{2}{5} \right)}}{5} + \frac{\pi}{5}$$
$$x_{1} = \frac{2 \pi n}{5} - \frac{\operatorname{asin}{\left(\frac{2}{5} \right)}}{5}$$
$$x_{2} = \frac{2 \pi n}{5} + \frac{\operatorname{asin}{\left(\frac{2}{5} \right)}}{5} + \frac{\pi}{5}$$
This roots
$$x_{1} = \frac{2 \pi n}{5} - \frac{\operatorname{asin}{\left(\frac{2}{5} \right)}}{5}$$
$$x_{2} = \frac{2 \pi n}{5} + \frac{\operatorname{asin}{\left(\frac{2}{5} \right)}}{5} + \frac{\pi}{5}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(\frac{2 \pi n}{5} - \frac{\operatorname{asin}{\left(\frac{2}{5} \right)}}{5}\right) + - \frac{1}{10}$$
=
$$\frac{2 \pi n}{5} - \frac{1}{10} - \frac{\operatorname{asin}{\left(\frac{2}{5} \right)}}{5}$$
substitute to the expression
$$5 \sin{\left(5 x \right)} + 2 \geq 0$$
$$5 \sin{\left(5 \left(\frac{2 \pi n}{5} - \frac{1}{10} - \frac{\operatorname{asin}{\left(\frac{2}{5} \right)}}{5}\right) \right)} + 2 \geq 0$$
2 - 5*sin(1/2 - 2*pi*n + asin(2/5)) >= 0
but
2 - 5*sin(1/2 - 2*pi*n + asin(2/5)) < 0
Then
$$x \leq \frac{2 \pi n}{5} - \frac{\operatorname{asin}{\left(\frac{2}{5} \right)}}{5}$$
no execute
one of the solutions of our inequality is:
$$x \geq \frac{2 \pi n}{5} - \frac{\operatorname{asin}{\left(\frac{2}{5} \right)}}{5} \wedge x \leq \frac{2 \pi n}{5} + \frac{\operatorname{asin}{\left(\frac{2}{5} \right)}}{5} + \frac{\pi}{5}$$
_____
/ \
-------•-------•-------
x1 x2