Mister Exam

Other calculators

2*sin(x)+1≤0 inequation

A inequation with variable

The solution

You have entered [src]
2*sin(x) + 1 <= 0
2sin(x)+102 \sin{\left(x \right)} + 1 \leq 0
2*sin(x) + 1 <= 0
Detail solution
Given the inequality:
2sin(x)+102 \sin{\left(x \right)} + 1 \leq 0
To solve this inequality, we must first solve the corresponding equation:
2sin(x)+1=02 \sin{\left(x \right)} + 1 = 0
Solve:
Given the equation
2sin(x)+1=02 \sin{\left(x \right)} + 1 = 0
- this is the simplest trigonometric equation
Move 1 to right part of the equation

with the change of sign in 1

We get:
2sin(x)=12 \sin{\left(x \right)} = -1
Divide both parts of the equation by 2

The equation is transformed to
sin(x)=12\sin{\left(x \right)} = - \frac{1}{2}
This equation is transformed to
x=2πn+asin(12)x = 2 \pi n + \operatorname{asin}{\left(- \frac{1}{2} \right)}
x=2πnasin(12)+πx = 2 \pi n - \operatorname{asin}{\left(- \frac{1}{2} \right)} + \pi
Or
x=2πnπ6x = 2 \pi n - \frac{\pi}{6}
x=2πn+7π6x = 2 \pi n + \frac{7 \pi}{6}
, where n - is a integer
x1=2πnπ6x_{1} = 2 \pi n - \frac{\pi}{6}
x2=2πn+7π6x_{2} = 2 \pi n + \frac{7 \pi}{6}
x1=2πnπ6x_{1} = 2 \pi n - \frac{\pi}{6}
x2=2πn+7π6x_{2} = 2 \pi n + \frac{7 \pi}{6}
This roots
x1=2πnπ6x_{1} = 2 \pi n - \frac{\pi}{6}
x2=2πn+7π6x_{2} = 2 \pi n + \frac{7 \pi}{6}
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
x0x1x_{0} \leq x_{1}
For example, let's take the point
x0=x1110x_{0} = x_{1} - \frac{1}{10}
=
(2πnπ6)+110\left(2 \pi n - \frac{\pi}{6}\right) + - \frac{1}{10}
=
2πnπ61102 \pi n - \frac{\pi}{6} - \frac{1}{10}
substitute to the expression
2sin(x)+102 \sin{\left(x \right)} + 1 \leq 0
2sin(2πnπ6110)+102 \sin{\left(2 \pi n - \frac{\pi}{6} - \frac{1}{10} \right)} + 1 \leq 0
         /1    pi         \     
1 - 2*sin|-- + -- - 2*pi*n| <= 0
         \10   6          /     

one of the solutions of our inequality is:
x2πnπ6x \leq 2 \pi n - \frac{\pi}{6}
 _____           _____          
      \         /
-------•-------•-------
       x1      x2

Other solutions will get with the changeover to the next point
etc.
The answer:
x2πnπ6x \leq 2 \pi n - \frac{\pi}{6}
x2πn+7π6x \geq 2 \pi n + \frac{7 \pi}{6}
Solving inequality on a graph
0-60-50-40-30-20-101020304050605-5
Rapid solution [src]
   /7*pi            11*pi\
And|---- <= x, x <= -----|
   \ 6                6  /
7π6xx11π6\frac{7 \pi}{6} \leq x \wedge x \leq \frac{11 \pi}{6}
(7*pi/6 <= x)∧(x <= 11*pi/6)
Rapid solution 2 [src]
 7*pi  11*pi 
[----, -----]
  6      6   
x in [7π6,11π6]x\ in\ \left[\frac{7 \pi}{6}, \frac{11 \pi}{6}\right]
x in Interval(7*pi/6, 11*pi/6)