Given the inequality:
$$3 \sin{\left(\frac{x}{4} \right)} < 2$$
To solve this inequality, we must first solve the corresponding equation:
$$3 \sin{\left(\frac{x}{4} \right)} = 2$$
Solve:
Given the equation
$$3 \sin{\left(\frac{x}{4} \right)} = 2$$
- this is the simplest trigonometric equation
Divide both parts of the equation by 3
The equation is transformed to
$$\sin{\left(\frac{x}{4} \right)} = \frac{2}{3}$$
This equation is transformed to
$$\frac{x}{4} = 2 \pi n + \operatorname{asin}{\left(\frac{2}{3} \right)}$$
$$\frac{x}{4} = 2 \pi n - \operatorname{asin}{\left(\frac{2}{3} \right)} + \pi$$
Or
$$\frac{x}{4} = 2 \pi n + \operatorname{asin}{\left(\frac{2}{3} \right)}$$
$$\frac{x}{4} = 2 \pi n - \operatorname{asin}{\left(\frac{2}{3} \right)} + \pi$$
, where n - is a integer
Divide both parts of the equation by
$$\frac{1}{4}$$
$$x_{1} = 8 \pi n + 4 \operatorname{asin}{\left(\frac{2}{3} \right)}$$
$$x_{2} = 8 \pi n - 4 \operatorname{asin}{\left(\frac{2}{3} \right)} + 4 \pi$$
$$x_{1} = 8 \pi n + 4 \operatorname{asin}{\left(\frac{2}{3} \right)}$$
$$x_{2} = 8 \pi n - 4 \operatorname{asin}{\left(\frac{2}{3} \right)} + 4 \pi$$
This roots
$$x_{1} = 8 \pi n + 4 \operatorname{asin}{\left(\frac{2}{3} \right)}$$
$$x_{2} = 8 \pi n - 4 \operatorname{asin}{\left(\frac{2}{3} \right)} + 4 \pi$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(8 \pi n + 4 \operatorname{asin}{\left(\frac{2}{3} \right)}\right) + - \frac{1}{10}$$
=
$$8 \pi n - \frac{1}{10} + 4 \operatorname{asin}{\left(\frac{2}{3} \right)}$$
substitute to the expression
$$3 \sin{\left(\frac{x}{4} \right)} < 2$$
$$3 \sin{\left(\frac{8 \pi n - \frac{1}{10} + 4 \operatorname{asin}{\left(\frac{2}{3} \right)}}{4} \right)} < 2$$
3*sin(-1/40 + 2*pi*n + asin(2/3)) < 2
one of the solutions of our inequality is:
$$x < 8 \pi n + 4 \operatorname{asin}{\left(\frac{2}{3} \right)}$$
_____ _____
\ /
-------ο-------ο-------
x1 x2Other solutions will get with the changeover to the next point
etc.
The answer:
$$x < 8 \pi n + 4 \operatorname{asin}{\left(\frac{2}{3} \right)}$$
$$x > 8 \pi n - 4 \operatorname{asin}{\left(\frac{2}{3} \right)} + 4 \pi$$