Mister Exam

tgx<=-sqrt3 inequation

A inequation with variable

The solution

You have entered [src]
             ___
tan(x) <= -\/ 3 
$$\tan{\left(x \right)} \leq - \sqrt{3}$$
tan(x) <= -sqrt(3)
Detail solution
Given the inequality:
$$\tan{\left(x \right)} \leq - \sqrt{3}$$
To solve this inequality, we must first solve the corresponding equation:
$$\tan{\left(x \right)} = - \sqrt{3}$$
Solve:
Given the equation
$$\tan{\left(x \right)} = - \sqrt{3}$$
- this is the simplest trigonometric equation
This equation is transformed to
$$x = \pi n + \operatorname{atan}{\left(- \sqrt{3} \right)}$$
Or
$$x = \pi n - \frac{\pi}{3}$$
, where n - is a integer
$$x_{1} = \pi n - \frac{\pi}{3}$$
$$x_{1} = \pi n - \frac{\pi}{3}$$
This roots
$$x_{1} = \pi n - \frac{\pi}{3}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(\pi n - \frac{\pi}{3}\right) + - \frac{1}{10}$$
=
$$\pi n - \frac{\pi}{3} - \frac{1}{10}$$
substitute to the expression
$$\tan{\left(x \right)} \leq - \sqrt{3}$$
$$\tan{\left(\pi n - \frac{\pi}{3} - \frac{1}{10} \right)} \leq - \sqrt{3}$$
    /1    pi       \       ___
-tan|-- + -- - pi*n| <= -\/ 3 
    \10   3        /    

the solution of our inequality is:
$$x \leq \pi n - \frac{\pi}{3}$$
 _____          
      \    
-------•-------
       x1
Solving inequality on a graph
Rapid solution 2 [src]
 pi  2*pi 
(--, ----]
 2    3   
$$x\ in\ \left(\frac{\pi}{2}, \frac{2 \pi}{3}\right]$$
x in Interval.Lopen(pi/2, 2*pi/3)
Rapid solution [src]
   /     2*pi  pi    \
And|x <= ----, -- < x|
   \      3    2     /
$$x \leq \frac{2 \pi}{3} \wedge \frac{\pi}{2} < x$$
(x <= 2*pi/3)∧(pi/2 < x)