Given the inequality:
$$\tan{\left(x \right)} \geq \frac{\left(-1\right) \sqrt{3}}{3}$$
To solve this inequality, we must first solve the corresponding equation:
$$\tan{\left(x \right)} = \frac{\left(-1\right) \sqrt{3}}{3}$$
Solve:
Given the equation
$$\tan{\left(x \right)} = \frac{\left(-1\right) \sqrt{3}}{3}$$
- this is the simplest trigonometric equation
This equation is transformed to
$$x = \pi n + \operatorname{atan}{\left(- \frac{\sqrt{3}}{3} \right)}$$
Or
$$x = \pi n - \frac{\pi}{6}$$
, where n - is a integer
$$x_{1} = \pi n - \frac{\pi}{6}$$
$$x_{1} = \pi n - \frac{\pi}{6}$$
This roots
$$x_{1} = \pi n - \frac{\pi}{6}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(\pi n - \frac{\pi}{6}\right) + - \frac{1}{10}$$
=
$$\pi n - \frac{\pi}{6} - \frac{1}{10}$$
substitute to the expression
$$\tan{\left(x \right)} \geq \frac{\left(-1\right) \sqrt{3}}{3}$$
$$\tan{\left(\pi n - \frac{\pi}{6} - \frac{1}{10} \right)} \geq \frac{\left(-1\right) \sqrt{3}}{3}$$
___
/1 pi \ -\/ 3
-tan|-- + -- - pi*n| >= -------
\10 6 / 3
but
___
/1 pi \ -\/ 3
-tan|-- + -- - pi*n| < -------
\10 6 / 3
Then
$$x \leq \pi n - \frac{\pi}{6}$$
no execute
the solution of our inequality is:
$$x \geq \pi n - \frac{\pi}{6}$$
_____
/
-------•-------
x1