Mister Exam

Other calculators


tg^2x-4tgx+3>0

tg^2x-4tgx+3>0 inequation

A inequation with variable

The solution

You have entered [src]
   2                      
tan (x) - 4*tan(x) + 3 > 0
$$\tan^{2}{\left(x \right)} - 4 \tan{\left(x \right)} + 3 > 0$$
tan(x)^2 - 4*tan(x) + 3 > 0
Detail solution
Given the inequality:
$$\tan^{2}{\left(x \right)} - 4 \tan{\left(x \right)} + 3 > 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\tan^{2}{\left(x \right)} - 4 \tan{\left(x \right)} + 3 = 0$$
Solve:
Given the equation:
$$\tan^{2}{\left(x \right)} - 4 \tan{\left(x \right)} + 3 = 0$$
Transform
$$\tan^{2}{\left(x \right)} - 4 \tan{\left(x \right)} + 3 = 0$$
$$\left(\tan{\left(x \right)} - 3\right) \left(\tan{\left(x \right)} - 1\right) = 0$$
Consider each factor separately

Step


$$\tan{\left(x \right)} - 1 = 0$$
- this is the simplest trigonometric equation
Move $-1$ to right part of the equation
with the change of sign in $-1$
We get:
$$\tan{\left(x \right)} = 1$$
This equation is transformed to
$$x = \pi n + \operatorname{atan}{\left(1 \right)}$$
Or
$$x = \pi n + \frac{\pi}{4}$$
, where n - is a integer

Step


$$\tan{\left(x \right)} - 3 = 0$$
- this is the simplest trigonometric equation
Move $-3$ to right part of the equation
with the change of sign in $-3$
We get:
$$\tan{\left(x \right)} = 3$$
This equation is transformed to
$$x = \pi n + \operatorname{atan}{\left(3 \right)}$$
Or
$$x = \pi n + \operatorname{atan}{\left(3 \right)}$$
, where n - is a integer
The final answer:
$$x_{1} = \pi n + \frac{\pi}{4}$$
$$x_{2} = \pi n + \operatorname{atan}{\left(3 \right)}$$
$$x_{1} = \pi n + \frac{\pi}{4}$$
$$x_{2} = \pi n + \operatorname{atan}{\left(3 \right)}$$
$$x_{1} = \pi n + \frac{\pi}{4}$$
$$x_{2} = \pi n + \operatorname{atan}{\left(3 \right)}$$
This roots
$$x_{1} = \pi n + \frac{\pi}{4}$$
$$x_{2} = \pi n + \operatorname{atan}{\left(3 \right)}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(\pi n + \frac{\pi}{4}\right) - \frac{1}{10}$$
=
$$\pi n - \frac{1}{10} + \frac{\pi}{4}$$
substitute to the expression
$$\tan^{2}{\left(x \right)} - 4 \tan{\left(x \right)} + 3 > 0$$
$$\tan^{2}{\left(\pi n - \frac{1}{10} + \frac{\pi}{4} \right)} - 4 \tan{\left(\pi n - \frac{1}{10} + \frac{\pi}{4} \right)} + 3 > 0$$
       2/1    pi\        /1    pi\    
3 + cot |-- + --| - 4*cot|-- + --| > 0
        \10   4 /        \10   4 /    

one of the solutions of our inequality is:
$$x < \pi n + \frac{\pi}{4}$$
 _____           _____          
      \         /
-------ο-------ο-------
       x_1      x_2

Other solutions will get with the changeover to the next point
etc.
The answer:
$$x < \pi n + \frac{\pi}{4}$$
$$x > \pi n + \operatorname{atan}{\left(3 \right)}$$
Solving inequality on a graph
Rapid solution [src]
  /   /            pi\     /pi            \     /    pi             \\
Or|And|0 <= x, x < --|, And|-- < x, x < pi|, And|x < --, atan(3) < x||
  \   \            4 /     \2             /     \    2              //
$$\left(0 \leq x \wedge x < \frac{\pi}{4}\right) \vee \left(\frac{\pi}{2} < x \wedge x < \pi\right) \vee \left(x < \frac{\pi}{2} \wedge \operatorname{atan}{\left(3 \right)} < x\right)$$
((0 <= x)∧(x < pi/4))∨((x < pi)∧(pi/2 < x))∨((atan(3) < x)∧(x < pi/2))
Rapid solution 2 [src]
    pi              pi     pi     
[0, --) U (atan(3), --) U (--, pi)
    4               2      2      
$$x\ in\ \left[0, \frac{\pi}{4}\right) \cup \left(\operatorname{atan}{\left(3 \right)}, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \pi\right)$$
x in Union(Interval.Ropen(0, pi/4), Interval.open(pi/2, pi), Interval.open(atan(3), pi/2))
The graph
tg^2x-4tgx+3>0 inequation