Mister Exam

Other calculators

tg2x<=tg(pi/3) inequation

A inequation with variable

The solution

You have entered [src]
               /pi\
tan(2*x) <= tan|--|
               \3 /
$$\tan{\left(2 x \right)} \leq \tan{\left(\frac{\pi}{3} \right)}$$
tan(2*x) <= tan(pi/3)
Detail solution
Given the inequality:
$$\tan{\left(2 x \right)} \leq \tan{\left(\frac{\pi}{3} \right)}$$
To solve this inequality, we must first solve the corresponding equation:
$$\tan{\left(2 x \right)} = \tan{\left(\frac{\pi}{3} \right)}$$
Solve:
Given the equation
$$\tan{\left(2 x \right)} = \tan{\left(\frac{\pi}{3} \right)}$$
- this is the simplest trigonometric equation
This equation is transformed to
$$2 x = \pi n + \operatorname{atan}{\left(\sqrt{3} \right)}$$
Or
$$2 x = \pi n + \frac{\pi}{3}$$
, where n - is a integer
Divide both parts of the equation by
$$2$$
$$x_{1} = \frac{\pi n}{2} + \frac{\pi}{6}$$
$$x_{1} = \frac{\pi n}{2} + \frac{\pi}{6}$$
This roots
$$x_{1} = \frac{\pi n}{2} + \frac{\pi}{6}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(\frac{\pi n}{2} + \frac{\pi}{6}\right) + - \frac{1}{10}$$
=
$$\frac{\pi n}{2} - \frac{1}{10} + \frac{\pi}{6}$$
substitute to the expression
$$\tan{\left(2 x \right)} \leq \tan{\left(\frac{\pi}{3} \right)}$$
$$\tan{\left(2 \left(\frac{\pi n}{2} - \frac{1}{10} + \frac{\pi}{6}\right) \right)} \leq \tan{\left(\frac{\pi}{3} \right)}$$
   /  1   pi       \      ___
tan|- - + -- + pi*n| <= \/ 3 
   \  5   3        /    

the solution of our inequality is:
$$x \leq \frac{\pi n}{2} + \frac{\pi}{6}$$
 _____          
      \    
-------•-------
       x1
Solving inequality on a graph
Rapid solution 2 [src]
    pi     pi  pi 
[0, --] U (--, --]
    6      4   2  
$$x\ in\ \left[0, \frac{\pi}{6}\right] \cup \left(\frac{\pi}{4}, \frac{\pi}{2}\right]$$
x in Union(Interval(0, pi/6), Interval.Lopen(pi/4, pi/2))
Rapid solution [src]
  /   /             pi\     /     pi  pi    \\
Or|And|0 <= x, x <= --|, And|x <= --, -- < x||
  \   \             6 /     \     2   4     //
$$\left(0 \leq x \wedge x \leq \frac{\pi}{6}\right) \vee \left(x \leq \frac{\pi}{2} \wedge \frac{\pi}{4} < x\right)$$
((0 <= x)∧(x <= pi/6))∨((x <= pi/2)∧(pi/4 < x))