Mister Exam

Other calculators


tan(x+pi/3)<1

tan(x+pi/3)<1 inequation

A inequation with variable

The solution

You have entered [src]
   /    pi\    
tan|x + --| < 1
   \    3 /    
$$\tan{\left(x + \frac{\pi}{3} \right)} < 1$$
tan(x + pi/3) < 1
Detail solution
Given the inequality:
$$\tan{\left(x + \frac{\pi}{3} \right)} < 1$$
To solve this inequality, we must first solve the corresponding equation:
$$\tan{\left(x + \frac{\pi}{3} \right)} = 1$$
Solve:
Given the equation
$$\tan{\left(x + \frac{\pi}{3} \right)} = 1$$
- this is the simplest trigonometric equation
This equation is transformed to
$$x + \frac{\pi}{3} = \pi n + \operatorname{atan}{\left(1 \right)}$$
Or
$$x + \frac{\pi}{3} = \pi n + \frac{\pi}{4}$$
, where n - is a integer
Move
$$\frac{\pi}{3}$$
to right part of the equation with the opposite sign, in total:
$$x = \pi n - \frac{\pi}{12}$$
$$x_{1} = \pi n - \frac{\pi}{12}$$
$$x_{1} = \pi n - \frac{\pi}{12}$$
This roots
$$x_{1} = \pi n - \frac{\pi}{12}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(\pi n - \frac{\pi}{12}\right) - \frac{1}{10}$$
=
$$\pi n - \frac{\pi}{12} - \frac{1}{10}$$
substitute to the expression
$$\tan{\left(x + \frac{\pi}{3} \right)} < 1$$
$$\tan{\left(\left(\pi n - \frac{\pi}{12} - \frac{1}{10}\right) + \frac{\pi}{3} \right)} < 1$$
   /1    pi\    
cot|-- + --| < 1
   \10   4 /    

the solution of our inequality is:
$$x < \pi n - \frac{\pi}{12}$$
 _____          
      \    
-------ο-------
       x_1
Solving inequality on a graph
Rapid solution [src]
   /                     /   ___     ___ \\
   |pi                   | \/ 6  - \/ 2  ||
And|-- < x, x < pi + atan|---------------||
   |6                    |    ___     ___||
   \                     \- \/ 2  - \/ 6 //
$$\frac{\pi}{6} < x \wedge x < \operatorname{atan}{\left(\frac{- \sqrt{2} + \sqrt{6}}{- \sqrt{6} - \sqrt{2}} \right)} + \pi$$
(pi/6 < x)∧(x < pi + atan((sqrt(6) - sqrt(2))/(-sqrt(2) - sqrt(6))))
Rapid solution 2 [src]
              /  ___     ___\ 
 pi           |\/ 2  - \/ 6 | 
(--, pi + atan|-------------|)
 6            |  ___     ___| 
              \\/ 2  + \/ 6 / 
$$x\ in\ \left(\frac{\pi}{6}, \operatorname{atan}{\left(\frac{- \sqrt{6} + \sqrt{2}}{\sqrt{2} + \sqrt{6}} \right)} + \pi\right)$$
x in Interval.open(pi/6, atan((-sqrt(6) + sqrt(2))/(sqrt(2) + sqrt(6))) + pi)
The graph
tan(x+pi/3)<1 inequation