Mister Exam

Other calculators

tan(x+pi/4)<1 inequation

A inequation with variable

The solution

You have entered [src]
   /    pi\    
tan|x + --| < 1
   \    4 /    
$$\tan{\left(x + \frac{\pi}{4} \right)} < 1$$
tan(x + pi/4) < 1
Detail solution
Given the inequality:
$$\tan{\left(x + \frac{\pi}{4} \right)} < 1$$
To solve this inequality, we must first solve the corresponding equation:
$$\tan{\left(x + \frac{\pi}{4} \right)} = 1$$
Solve:
Given the equation
$$\tan{\left(x + \frac{\pi}{4} \right)} = 1$$
- this is the simplest trigonometric equation
This equation is transformed to
$$x + \frac{\pi}{4} = \pi n + \operatorname{atan}{\left(1 \right)}$$
Or
$$x + \frac{\pi}{4} = \pi n + \frac{\pi}{4}$$
, where n - is a integer
Move
$$\frac{\pi}{4}$$
to right part of the equation
with the opposite sign, in total:
$$x = \pi n$$
$$x_{1} = \pi n$$
$$x_{1} = \pi n$$
This roots
$$x_{1} = \pi n$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\pi n + - \frac{1}{10}$$
=
$$\pi n - \frac{1}{10}$$
substitute to the expression
$$\tan{\left(x + \frac{\pi}{4} \right)} < 1$$
$$\tan{\left(\left(\pi n - \frac{1}{10}\right) + \frac{\pi}{4} \right)} < 1$$
   /  1    pi       \    
tan|- -- + -- + pi*n| < 1
   \  10   4        /    

the solution of our inequality is:
$$x < \pi n$$
 _____          
      \    
-------ο-------
       x1
Solving inequality on a graph
Rapid solution 2 [src]
 pi     
(--, pi)
 4      
$$x\ in\ \left(\frac{\pi}{4}, \pi\right)$$
x in Interval.open(pi/4, pi)
Rapid solution [src]
   /pi            \
And|-- < x, x < pi|
   \4             /
$$\frac{\pi}{4} < x \wedge x < \pi$$
(x < pi)∧(pi/4 < x)