Mister Exam

tanx<3 inequation

A inequation with variable

The solution

You have entered [src]
tan(x) < 3
$$\tan{\left(x \right)} < 3$$
tan(x) < 3
Detail solution
Given the inequality:
$$\tan{\left(x \right)} < 3$$
To solve this inequality, we must first solve the corresponding equation:
$$\tan{\left(x \right)} = 3$$
Solve:
Given the equation
$$\tan{\left(x \right)} = 3$$
- this is the simplest trigonometric equation
This equation is transformed to
$$x = \pi n + \operatorname{atan}{\left(3 \right)}$$
Or
$$x = \pi n + \operatorname{atan}{\left(3 \right)}$$
, where n - is a integer
$$x_{1} = \pi n + \operatorname{atan}{\left(3 \right)}$$
$$x_{1} = \pi n + \operatorname{atan}{\left(3 \right)}$$
This roots
$$x_{1} = \pi n + \operatorname{atan}{\left(3 \right)}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(\pi n + \operatorname{atan}{\left(3 \right)}\right) + - \frac{1}{10}$$
=
$$\pi n - \frac{1}{10} + \operatorname{atan}{\left(3 \right)}$$
substitute to the expression
$$\tan{\left(x \right)} < 3$$
$$\tan{\left(\pi n - \frac{1}{10} + \operatorname{atan}{\left(3 \right)} \right)} < 3$$
tan(-1/10 + pi*n + atan(3)) < 3

the solution of our inequality is:
$$x < \pi n + \operatorname{atan}{\left(3 \right)}$$
 _____          
      \    
-------ο-------
       x1
Solving inequality on a graph
Rapid solution [src]
  /                             /         pi    \\
Or|And(0 <= x, x < atan(3)), And|x <= pi, -- < x||
  \                             \         2     //
$$\left(0 \leq x \wedge x < \operatorname{atan}{\left(3 \right)}\right) \vee \left(x \leq \pi \wedge \frac{\pi}{2} < x\right)$$
((0 <= x)∧(x < atan(3)))∨((x <= pi)∧(pi/2 < x))
Rapid solution 2 [src]
                pi     
[0, atan(3)) U (--, pi]
                2      
$$x\ in\ \left[0, \operatorname{atan}{\left(3 \right)}\right) \cup \left(\frac{\pi}{2}, \pi\right]$$
x in Union(Interval.Ropen(0, atan(3)), Interval.Lopen(pi/2, pi))