Mister Exam

Other calculators

t^2+4*t<0 inequation

A inequation with variable

The solution

You have entered [src]
 2          
t  + 4*t < 0
$$t^{2} + 4 t < 0$$
t^2 + 4*t < 0
Detail solution
Given the inequality:
$$t^{2} + 4 t < 0$$
To solve this inequality, we must first solve the corresponding equation:
$$t^{2} + 4 t = 0$$
Solve:
$$x_{1} = -4$$
$$x_{2} = 0$$
$$x_{1} = -4$$
$$x_{2} = 0$$
This roots
$$x_{1} = -4$$
$$x_{2} = 0$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$-4 + - \frac{1}{10}$$
=
$$-4.1$$
substitute to the expression
$$t^{2} + 4 t < 0$$
$$t^{2} + 4 t < 0$$
 2          
t  + 4*t < 0
    

Then
$$x < -4$$
no execute
one of the solutions of our inequality is:
$$x > -4 \wedge x < 0$$
         _____  
        /     \  
-------ο-------ο-------
       x1      x2
Rapid solution [src]
And(-4 < t, t < 0)
$$-4 < t \wedge t < 0$$
(-4 < t)∧(t < 0)
Rapid solution 2 [src]
(-4, 0)
$$x\ in\ \left(-4, 0\right)$$
x in Interval.open(-4, 0)