Mister Exam

Other calculators

sqrt((x+1)/(2x-1))<1 inequation

A inequation with variable

The solution

You have entered [src]
    _________    
   /  x + 1      
  /  -------  < 1
\/   2*x - 1     
$$\sqrt{\frac{x + 1}{2 x - 1}} < 1$$
sqrt((x + 1)/(2*x - 1)) < 1
Detail solution
Given the inequality:
$$\sqrt{\frac{x + 1}{2 x - 1}} < 1$$
To solve this inequality, we must first solve the corresponding equation:
$$\sqrt{\frac{x + 1}{2 x - 1}} = 1$$
Solve:
$$x_{1} = 2$$
$$x_{1} = 2$$
This roots
$$x_{1} = 2$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{1}{10} + 2$$
=
$$\frac{19}{10}$$
substitute to the expression
$$\sqrt{\frac{x + 1}{2 x - 1}} < 1$$
$$\sqrt{\frac{1 + \frac{19}{10}}{-1 + \frac{2 \cdot 19}{10}}} < 1$$
  _____    
\/ 203     
------- < 1
   14      
    

but
  _____    
\/ 203     
------- > 1
   14      
    

Then
$$x < 2$$
no execute
the solution of our inequality is:
$$x > 2$$
         _____  
        /
-------ο-------
       x1
Solving inequality on a graph
Rapid solution [src]
Or(And(x <= -1, -oo < x), And(2 < x, x < oo))
$$\left(x \leq -1 \wedge -\infty < x\right) \vee \left(2 < x \wedge x < \infty\right)$$
((x <= -1)∧(-oo < x))∨((2 < x)∧(x < oo))
Rapid solution 2 [src]
(-oo, -1] U (2, oo)
$$x\ in\ \left(-\infty, -1\right] \cup \left(2, \infty\right)$$
x in Union(Interval(-oo, -1), Interval.open(2, oo))