Mister Exam

Other calculators

sqrt(2x^2-3x-5)
A inequation with variable

The solution

   ________________            
  /    2                _______
\/  2*x  - 3*x - 5  < \/ x - 1 
$$\sqrt{\left(2 x^{2} - 3 x\right) - 5} < \sqrt{x - 1}$$
sqrt(2*x^2 - 3*x - 5) < sqrt(x - 1)
Solving inequality on a graph
Rapid solution 2 [src]
            ___ 
[5/2, 1 + \/ 3 )
$$x\ in\ \left[\frac{5}{2}, 1 + \sqrt{3}\right)$$
x in Interval.Ropen(5/2, 1 + sqrt(3))
Rapid solution [src]
   /                    ___\
And\5/2 <= x, x < 1 + \/ 3 /
$$\frac{5}{2} \leq x \wedge x < 1 + \sqrt{3}$$
(5/2 <= x)∧(x < 1 + sqrt(3))