Mister Exam

Other calculators

6^(x^2-9)>1 inequation

A inequation with variable

The solution

You have entered [src]
  2        
 x  - 9    
6       > 1
$$6^{x^{2} - 9} > 1$$
6^(x^2 - 9) > 1
Detail solution
Given the inequality:
$$6^{x^{2} - 9} > 1$$
To solve this inequality, we must first solve the corresponding equation:
$$6^{x^{2} - 9} = 1$$
Solve:
$$x_{1} = -3$$
$$x_{2} = 3$$
$$x_{1} = -3$$
$$x_{2} = 3$$
This roots
$$x_{1} = -3$$
$$x_{2} = 3$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$-3 + - \frac{1}{10}$$
=
$$- \frac{31}{10}$$
substitute to the expression
$$6^{x^{2} - 9} > 1$$
$$6^{-9 + \left(- \frac{31}{10}\right)^{2}} > 1$$
  61    
 ---    
 100 > 1
6       
    

one of the solutions of our inequality is:
$$x < -3$$
 _____           _____          
      \         /
-------ο-------ο-------
       x1      x2

Other solutions will get with the changeover to the next point
etc.
The answer:
$$x < -3$$
$$x > 3$$
Solving inequality on a graph
Rapid solution 2 [src]
(-oo, -3) U (3, oo)
$$x\ in\ \left(-\infty, -3\right) \cup \left(3, \infty\right)$$
x in Union(Interval.open(-oo, -3), Interval.open(3, oo))
Rapid solution [src]
Or(3 < x, x < -3)
$$3 < x \vee x < -3$$
(3 < x)∨(x < -3)