Mister Exam

Other calculators


sinx>(sqtr3)/2

sinx>(sqtr3)/2 inequation

A inequation with variable

The solution

You have entered [src]
           ___
         \/ 3 
sin(x) > -----
           2  
$$\sin{\left(x \right)} > \frac{\sqrt{3}}{2}$$
sin(x) > sqrt(3)/2
Detail solution
Given the inequality:
$$\sin{\left(x \right)} > \frac{\sqrt{3}}{2}$$
To solve this inequality, we must first solve the corresponding equation:
$$\sin{\left(x \right)} = \frac{\sqrt{3}}{2}$$
Solve:
Given the equation
$$\sin{\left(x \right)} = \frac{\sqrt{3}}{2}$$
- this is the simplest trigonometric equation
This equation is transformed to
$$x = 2 \pi n + \operatorname{asin}{\left(\frac{\sqrt{3}}{2} \right)}$$
$$x = 2 \pi n - \operatorname{asin}{\left(\frac{\sqrt{3}}{2} \right)} + \pi$$
Or
$$x = 2 \pi n + \frac{\pi}{3}$$
$$x = 2 \pi n + \frac{2 \pi}{3}$$
, where n - is a integer
$$x_{1} = 2 \pi n + \frac{\pi}{3}$$
$$x_{2} = 2 \pi n + \frac{2 \pi}{3}$$
$$x_{1} = 2 \pi n + \frac{\pi}{3}$$
$$x_{2} = 2 \pi n + \frac{2 \pi}{3}$$
This roots
$$x_{1} = 2 \pi n + \frac{\pi}{3}$$
$$x_{2} = 2 \pi n + \frac{2 \pi}{3}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(2 \pi n + \frac{\pi}{3}\right) - \frac{1}{10}$$
=
$$2 \pi n - \frac{1}{10} + \frac{\pi}{3}$$
substitute to the expression
$$\sin{\left(x \right)} > \frac{\sqrt{3}}{2}$$
$$\sin{\left(2 \pi n - \frac{1}{10} + \frac{\pi}{3} \right)} > \frac{\sqrt{3}}{2}$$
                 ___
   /1    pi\   \/ 3 
cos|-- + --| > -----
   \10   6 /     2  
               

Then
$$x < 2 \pi n + \frac{\pi}{3}$$
no execute
one of the solutions of our inequality is:
$$x > 2 \pi n + \frac{\pi}{3} \wedge x < 2 \pi n + \frac{2 \pi}{3}$$
         _____  
        /     \  
-------ο-------ο-------
       x_1      x_2
Solving inequality on a graph
Rapid solution [src]
   /pi          2*pi\
And|-- < x, x < ----|
   \3            3  /
$$\frac{\pi}{3} < x \wedge x < \frac{2 \pi}{3}$$
(pi/3 < x)∧(x < 2*pi/3)
Rapid solution 2 [src]
 pi  2*pi 
(--, ----)
 3    3   
$$x\ in\ \left(\frac{\pi}{3}, \frac{2 \pi}{3}\right)$$
x in Interval.open(pi/3, 2*pi/3)
The graph
sinx>(sqtr3)/2 inequation