Given the inequality:
$$\sin{\left(x \right)} > \frac{\sqrt{3}}{2}$$
To solve this inequality, we must first solve the corresponding equation:
$$\sin{\left(x \right)} = \frac{\sqrt{3}}{2}$$
Solve:
Given the equation
$$\sin{\left(x \right)} = \frac{\sqrt{3}}{2}$$
- this is the simplest trigonometric equation
This equation is transformed to
$$x = 2 \pi n + \operatorname{asin}{\left(\frac{\sqrt{3}}{2} \right)}$$
$$x = 2 \pi n - \operatorname{asin}{\left(\frac{\sqrt{3}}{2} \right)} + \pi$$
Or
$$x = 2 \pi n + \frac{\pi}{3}$$
$$x = 2 \pi n + \frac{2 \pi}{3}$$
, where n - is a integer
$$x_{1} = 2 \pi n + \frac{\pi}{3}$$
$$x_{2} = 2 \pi n + \frac{2 \pi}{3}$$
$$x_{1} = 2 \pi n + \frac{\pi}{3}$$
$$x_{2} = 2 \pi n + \frac{2 \pi}{3}$$
This roots
$$x_{1} = 2 \pi n + \frac{\pi}{3}$$
$$x_{2} = 2 \pi n + \frac{2 \pi}{3}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(2 \pi n + \frac{\pi}{3}\right) - \frac{1}{10}$$
=
$$2 \pi n - \frac{1}{10} + \frac{\pi}{3}$$
substitute to the expression
$$\sin{\left(x \right)} > \frac{\sqrt{3}}{2}$$
$$\sin{\left(2 \pi n - \frac{1}{10} + \frac{\pi}{3} \right)} > \frac{\sqrt{3}}{2}$$
___
/1 pi\ \/ 3
cos|-- + --| > -----
\10 6 / 2
Then
$$x < 2 \pi n + \frac{\pi}{3}$$
no execute
one of the solutions of our inequality is:
$$x > 2 \pi n + \frac{\pi}{3} \wedge x < 2 \pi n + \frac{2 \pi}{3}$$
_____
/ \
-------ο-------ο-------
x_1 x_2